

#### SCIENCEDOMAIN international www.sciencedomain.org

#### **SDI Review Form 1.6**

| Journal Name:            | Physical Science International Journal                                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript Number:       | 2014_PSIJ_9933                                                                                                                           |
| Title of the Manuscript: | Numerical Simulation of Spin Glass State in Diluted Magnetic Materials Using Ising Spin Model in 2D with Distance Dependent interactions |
| Type of the Article      | Original Research Article                                                                                                                |

#### **General guideline for Peer Review process:**

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound.

To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)



# SDI Review Form 1.6

### PART 1: Review Comments

|                              | Reviewer's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Author's comment</b> (if agreed with reviewer,<br>correct the manuscript and highlight that part in<br>the manuscript. It is mandatory that authors<br>should write his/her feedback here) |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compulsory REVISION comments |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                               |
|                              | This paper is a new tentative to describe magnetic<br>interactions in a diluted spin glass and to find the<br>critical exponents associated with the phase<br>transition at the freezing temperature. Thirty years<br>ago, spin glass properties have been the subject of<br>many controversies about the existence or the<br>absence of a thermodynamic phase transition. The<br>following conclusions have been established: The<br>freezing temperature is characterized by an<br>absence of divergence of the main contribution to<br>the magnetic susceptibility proportional to the<br>magnetic field H while the complementary<br>contribution varying with H <sup>3</sup> diverges [1,2].<br>Experimental critical exponents have been<br>deduced for the diverging contributions: |                                                                                                                                                                                               |
|                              | Mean field theory: G. Parisi and G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                               |
|                              | Toulouse J. Physique Lettres 41, (1980) L-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
|                              | Experimental work : Berton, J. Chaussy, J.<br>Odin, R. Rammal and R. Tournier,<br>Magnetocaloric investigation of (H,T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                               |



# SDI Review Form 1.6

| 1                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| phase diagram of CuMn spin glass, J.<br>Physique – LETTRES 43, (1982) L-153- L<br>158*                                                                                                                         |  |
| The numerical calculations show the existence of a lot of spins in zero molecular field and the                                                                                                                |  |
| existence of a phase transition simulating various<br>space dimensions and samples. The calculations<br>seem to be in good agreement with experimental                                                         |  |
| resultsconcerning the diverging susceptibility<br>exponents.<br>I believe that the paper presentation is too closed                                                                                            |  |
| in a virtual world instead of opening the window<br>to real spin glasses measured in large sizes that<br>computers cannot realize. It is also the best way to<br>evaluate the quality of the used assumptions. |  |
| For example there is no conclusion concerning the expected scaling laws obeyed by spin glasses with RKKY interactions: see A. Blandin thesis in Orsay 50 years ago and the following paper.                    |  |
| J. Souletie and R. Tournier, Specific heat<br>and magnetization in dilute magnetic alloys, J.<br>Low Temperature Physics, 1, (1969) 95-108.                                                                    |  |
| It is easy to vary the concentration of spins and to<br>find a spin density in zero molecular field which is<br>independent of the composition                                                                 |  |
| This paper can be accepted in this state.                                                                                                                                                                      |  |



# SCIENCEDOMAIN international

www.sciencedomain.org

### **SDI Review Form 1.6**

|                           | Nevertheless, I believe that it can be improved to be convincing. |  |
|---------------------------|-------------------------------------------------------------------|--|
|                           | Comments received by email                                        |  |
| Minor REVISION comments   |                                                                   |  |
|                           |                                                                   |  |
|                           |                                                                   |  |
|                           |                                                                   |  |
| Optional/General comments |                                                                   |  |
|                           |                                                                   |  |
|                           |                                                                   |  |
|                           |                                                                   |  |

#### **Reviewer Details:**

| Name:                            | Robert Tournier                                                  |
|----------------------------------|------------------------------------------------------------------|
| Department, University & Country | Technologies Avancées, B.P. 166, 38042 Grenoble Cedex 09, France |