SCIENCEDOMAIN international

www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

PART 1:

Journal Name:	Physical Science International Journal
Manuscript Number:	2014_PSIJ_9605
Title of the Manuscript:	The magnetized plasma effect on cathode fall thickness for helium gas discharge

PART 2:

FINAL EVALUATOR'S comments on revised paper (if any)	Authors' response to final evaluator's comments
In this article the authors investigated the radial and axial distributions of electron densities	
and temperatures in presence and absence of permanent magnetic field for a helium gas	
discharge. There are three suggested modifications, which are given below:	
1. Introduction requires a deeper state of the art. Nowadays, it is rare to support a job with	
few old publications.	
2. There is not a schematic of whole experimental setup as authors claim that had been	
corrected. It would be appreciated to see a diagram showing all used equipment and where it	
had placed respect to the reactor, the gas supply circuit, etc.	
3. Most of the references must be corrected and standardized, e. g. 6- S.J. You a, T.T. Hai	
a, M. Park a, D.W. Kim a and J.H. Kim 2011 Role of transverse magnetic field in the capacitive	
discharge Thin Solid Films 519 6981, in this case, the reference has been reproduced by a	
"copy - paste" action.	

Note: Anonymous Reviewer

