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3
4

Abstract5

The mass spectra of quarkonium systems at T= 0 are analyzed by solving the non-6
relativistic radial wave equation using the internal energy potential. The QGP matter is7
studied through the dissociations of quarkonium states. A modified form of the internal8
energy potential function is used to determine the EoS at different number of quark9
flavors by using Mayer's cluster expansion theory and phenomenological thermodynamic10
model. The thermodynamic model gives a good agreement with the lattice results rather11
than Mayer’s cluster expansion theory. One can conclude that, the Mayer’s cluster12
expansion theory may be more suitable to study a weakly coupled plasma while, the QGP13
may be considered as a strongly interacting plasma.14
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17
I. Introduction18

In the heavy ion collison, there are many signature of deconfinment state creation;19

one of these signatures is the anomalous suppression of heavy quarkonium production.20

The heavy mesons produced before the creation formation of a thermalized quark-gluon-21

plasma and  tend to dissociate in the deconfined state. This phenomenon can be22

described by the screening of the quark-antiquark (quarkonium states) interaction by the23

large number of color charges in the medium. This mechanism is similar to the Debye24

screening by electromagnetic charges in the quantum electrodynamics (QED) plasmas [1].25

The suppression of heavy quarkonium at finite temperature greater than zero, T ≥ 026

concerning to the quantum chromodynamics (QCD) has been studied [2]. So that, the27

dissociation temperature of a particular quarknoium, playes an important role to28

understand the mechanism of quarkonium dissociation (deconfinemt) in the quark-gluon-29

plasma (QGP). Brambilla et al.,[3] have shown that the heavy quark/antiquark potential30

at finite temperature develops an imaginary part that is responsible of the31

quarkonium dissociation in medium.32

33

The mass spectra at T= 0, can be reproduced by using the potential models. So that,34

the lattice QCD simulations could find a relevant potential term at T > 0.  This can be35

done by studying the free energy between a static qq pair at finite temperature [4, 5].36
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From the lattice QCD calculations   critical temperature; Tc can be determined in which37

the confining part of the free energy has no effect and vanishes [6].38

Then the free energy obtained in these calculations can be used to establish the39

convenient potential model at T > 0. However, in other works [7-10], the internal energy40

can be used as a potential energy. The explansion of how the different potential models41

be applied to quarkonium states at temperature greater than zero (i.e T > 0) is still not42

completely clarified. Till now, it is believed quantum chromodynamics (QCD) at high43

temperature to be in a quark gluon plasma (QGP) phase, where color charges may be44

screened rather than confined [11]. This implies that, at high energy density  or baryon45

density  , hadron state goes to deconfined state known as the QGP [12].46

In the recent years, there was a lot of theoretical, experimental, and lattice47

calculation of QCD results [13-15]. The existence of QGP is now well established at48

LHC and RHIC in experiments such as ALICE and STAR. There is a large amount of49

study attempts to explain such a matter and the EoS using different models [13-19].50

Recently, the Generalized Uncertainty Principle (GUP), used to derive the51

thermodynamics of ideal Quark-Gluon Plasma (QGP) at a vanishing chemical potential52

[20].53

The EoS can be applied directly to study the dynamical quark-gluon plasma (QGP),54

even in case of interpretation of the heavy-ion experiments or in the framework of the55

theoretical modeling to study the behavior of hot and dense matter in the early universe56

[21]. Liu, Shen and Chiang [22] are used the Cornell potential in the approach of57

Mayer’s cluster expansion to calculate the EoS and the energy density of the QGP. Many58

theoretical models have been established i.e the quasiparticle and hybird models [23, 24,59

25] ,and succeed in the description of the EoS of both hadronc gas HG and  QGP.60

In the work we discuss a quantity of interest, the plasma parameter,  , which can61

be defined as the ratio of the potential energy to the kinetic energy. In QED plasma62

(classical plasma), the parameter has four different regimes: weakly coupled for the gas63

regime 1 , liquid regime for  1-10, glassy liquid regime for  10-100, and64

solid regime for  > 300 [26]. Γ is defined as the ratio of potential energy to the kinetic65

energy  = < PE > / < KE >.66
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Strongly coupled plasma (SCP) is defined as a plasma in which the plasma67

parameter is of  unit 1 or greater  and the Boltzmann distribution for electrons and ions is68

given by ekT
e

e enn


0 and ikT
e

i enn


 0 , respectively [26-31]. This parameter  is used as69

a measure of the interaction strength in EM plasmas.70

71

II. The Bound State Problem72

The bound state energies of heavy quarkonium systems ( cc ) and ( bb ) are73

calculated at different temperatures using the non-relativistic radial wave equation given74

as;75

]),(2)1([ 2
222

2



 TrV
r
ll

dr
d



 )(rl = 0 (1)76

Where, l is the orbital quantum number, 2
2 2



E
 and )(rl is the radial wave77

function. The boundary conditions are given as;78

0)()0(  ll  (2)79

80

V(r, T) can be taken as the internal energy potential U1(r, T),81

T
TrFTTrFTrU





),(.),(),( 1

11 (3)82

Where the free energy potential, F1(r, T) = - rTDms e
r

).(
3
4  . And the function83

rTDme ).( is the screening term [10].84

A strong potential which includes a linear term such as the one in equation (4)85
has been extensively used for determining the coupling constant from the Charmonium86
decay.87

88

rTDms erC
r
TTrF ).(

1
)(

3
4),( 






 


(4)89

Where, C is a free parameter, and )(Ts is the running coupling constant which is given90

by;91
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Where, nf is the number of quark flavors, (nf = 0, 2, 3). From lattice QCD computations93

[10], the parameter  =  Tc where,  = 0.104  0.009.94

In the present work, Tc is taken as, Tc= 0.2 GeV. The Debye screening mass Dm (T) [32]95

is given by [10],96

TTTm sD ).(.)(  , (6)97

Where,  c4 . In table (1) all the parameters used are listed.98
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According to eqs. (3, 4), the internal energy potential can be rewritten as,108
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For simplicity,
)

3
211(

2
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fn
A




 and )(2



TnA 112

113

The total mass of the different quarkonium states (resonance masses) is given by;114

Parameter Value Ref.
 0.104 0.009 [4,10]

c 0.566 0.013 [4, 10]
 2.06 [4, 10]
Tc 0.2 GeV Present work
C 0.135 0.015 GeV2 Present work
mc 1.361 0.022 GeV Present work
mb 4.694 0.063 GeV Present work

Table (1) The parameters of the internal energy
potential.
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nlqnl mM  2 (8)115

Where, mq is the quark mass, and nl is the “binding energy” that we get from the numerical116

calculations to the Schrödinger equation and the masses of the quarks that are free parameters117

then one can calculate the total mass eq. (8). Equation (1) can be re-written as,118

0)()],([)(
2

2
 rTrC

dr
rd

l
l  (9)119

Where, 1 , 2
2 2



EK   and     C (r, T) = 2
)1(),(2

r
llTrV 

120

Introducing the dimensionless variables t and )(tl [33, 34] in equation (9) where,121

0
1

1

r
rt


 and )()( ttt ll   Where, 0r =1 Gev-1 minimum radius crosses at122

potential energy tends to zero one gets,123

)()],([4

2
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2

2

tTtC
t
r

dt
d

l
l 

 = 0 (10)124

125

With the boundary conditions,126

1)0( l , )1(l 0 (11)127

To transform eq. (10) to a true eigen-value equation, the range of t from (0, 1) can be128

divided into (n+2) points with the interval h and labeled with subscript j and the129

boundary conditions (11)  at j = 0 and n+1 can be written as,130

110  n (12)131

Using the finite difference approximation [35],132
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Substitute into eq. (10) one gets,134
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hj
h  (14)135

Equation (14) is a set of linear equations in j and can be written in the matrix form,136

S  = 0 (15)137
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Where S is a (n n) symmetric matrix and  is n-dimensional column matrix.  Eq. (15)138

can be transformed to a true eigen -value equation and solved numerically by using139

Jacobi method [35, 36].140

Table (2) is a list of the resonance masses nlM in (GeV) of cc and bb states.141

We have calculated them by solving the Schrödinger equation numerically by using the142

internal energy potential at T = 0. In table (2) the calculated masses of cc and bb143

states according to different previous potential forms and the internal energy potential are144

given. One can see that the masses calculated by using the internal energy potential  are145

very close to the experimental data.146

147

148

149

150

151

cc

nl State (GeV) nlM
[22, 37,38]

Internal energy
potential ( present

work)

Cornell
potential [22]

Phenomenological
potential [37]

1S /J (3.097 0.001) 3.097 3.0697 3.097

2S   (3.686 0.0027) 3.687 3.6978 3.684

3S   (4.040 0.0027) 4.047 4.1696 4.096

4S  (4.415  0.0062) 4.415 - 4.427

1P c (3.506 0.0041) 3.500 3.5003 3.520

1D  (3.768 0.0036) 3.769 - 3.671

2D  (4.159 0.02) 4.134 - 4.076

bb

nl State (GeV) nlM
[22, 37,38]

The present work Cornell
potential [22]

Screened potential
[38]

1S  (9.460 0.00026) 9.460 9.4450 9.460
2S ' (10.0233  0.00031) 10.0227 10.0040 10.016
3S '' (10.3553  0.0005) 10.3551 10.3547 10.351
4S  (10.580  1.0002) 10.580 - 10.611
5S (10.865 0.0008) 10.7808 - 10.831
1P b (9.9002  0.00026) 9.9003 9.8974 9.918

2P b (10.268  0.00022) 10.2522 - 10.269

1D  (10.161  0.0006) 10.1557 - 10.156

Table (2): The mass spectra of cc and bb bound states by using the internal energy potential compared
to the experimental masses and other theoretical potentials.
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III. The QGP equation of state by using Mayer’s cluster expansion theory152

Mayer’s theory of plasma is described in [39, 40]. The EoS is one of the most153

basic information in the case of studying the QGP matter;154

q
q

q
qqq n

Sn
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SnSnn

T
P
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

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 (16)155

Where P, T, qn , qn are the pressure, the temperature, the densities of the quarks and the156

antiquarks, respectively. The entropy S is given by [39],157

S =  
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Therefore equation (16) can be written as;162
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So, the internal energy potential eq. (7) can be transformed by Fourier transformation to164

the momentum space and rewritten as,165
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171

172

173

(20)174

The energy density can be calculated by the following relation [10]175

PT P
T

 
 
 (21)176

Taking 22 Tak f in which, af is the Stefan-Boltezmann constant [42] is given by,177

af = (16+
2
21 nf) 90

2
(22)178

179

IV. The phenomenological thermodynamic model180

The EoS of SCP as a function of Γ is given as [27] ,181

  nT
2
3







  exQED U (23)182

Where,  exU is the non-ideal or excess contribution to EoS and is given as [27];183

 exU =
 

7.53

OCP
ex

7.53

1031
)( U103


Abe

exU (24)184

Where the functions of  Abe
exU ,  OCP

exU are given as [27];185

)(Abe
exU =   ]

3
1

2
3ln

8
3[3

2
2 32/3 

  (25)186

187

)(OCP
exU = -0.898004  +0.96786 4/1 +0.220703 4/1 -0.86097 (26)188

189

The term Abe
exU was derived by Abe [42] and is valid for Γ < 0.1, and  = 0.57721 is the190

Euler’s constant. The term OCP
exU determined by simulation of one component plasma191

(OCP). The OCP is occurred when a single species of charged particles distributed in a192

uniform background of neutral charges, and is valid for 1  Γ < 180. Considering the193
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model proposed by Bannur [27] that the hadron (confined state) exists at T < Tc and goes194

to QGP (deconfined state) at T > Tc. In ref. [27] the plasma parameter Γ is determined195

for the Coulomb potential.196

T
r

KE
PE av

s
3
4

 (27)197

The coupling constant s 0.5, avr 1fm,
3/1

4
3








n
rav 

, where “n” is the number198

density.199

In the present work the plasma parameter  is calculated quantum mechanically as,200

  dQQ ˆ*201

In which we have used the wave function (eigen-function) that produced for the202

calculation of the bound state energies (eigen-values). For the SCQGP model of eq. (23)203

to include the relativistic quantum effects as indicated in ref. [27]. Hence, eq. (23) can be204

re-written as,205

 = (2.7 + Uex( )) n T (28)206

Where the first term (2.7 n T) corresponds to the ideal EoS, which may be written as,207

43 Ta fs  .208

3

4

1.1

3

Ta

Ta
n f

fs 


= 2.7 T (29)209

One can calculate the expectation value of the internal energy potential from the wave210

function reproduced from solving of the Schrödinger equation. From eq. (29) one obtains211

e( ) the energy density normalized to the ideal one:212

   11
2.7 ex

s

e U


    
(30)213

From eq.(21) and eq. (28) one can get the EoS (pressure) as following,214

 
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Where P0, is the pressure at temperature T0 and may be taken from one of the lattice data216

points or at critical temperature Tc.217

218

219

V. Results and discussion220

In figure (1) the internal energy potential U1(r, T) eq. (7) versus r is plotted at T = 0221

and compared with the Cornell potential [22]. Also, it is plotted at different temperature222

values, T= (0.5-1.5)Tc. One can notice that, at small r both potentials behave similarly223

approximately and intersect at r 1 GeV-1 in which the Coulomb term is more effective.224

At large distances the behavior of both potential forms is completely different where the225

confinement term of the potential is more effective. Also, the behavior of the226

deconfinement mechanism at large separation (r ) and high temperature (T > Tc) is shown.227
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238
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243

In figure (2) the running coupling constant )(Ts versus temperature T is plotted at244

different number of quark flavors. One can see that, the running coupling decreases245

logarithmically as T increases for different number of flavors (nf = 0, 2, 3). The behavior of246

Fig. (1) The internal energy potential U1(r, T) versus r  at different
temperature T= (0.5-1.5)Tc and at T = 0.
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Fig. (3) The Debye screening mass mD(T)/T versus T/Tc
compared with the lattice data [10].
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the Debye screening mass at different temperature is studied [see figure (3)]. This figure247

shows the calculated values of the Debye screening mass; mD; versus T/Tc and the248

lattice results [10, 32]. In this case the results predict that; mD(T) αs(T).T, instead of249

the usual dependence )(Ts T [10].250
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Fig. (2) The running coupling constant )(Ts versus T/Tc at
different number o quark f flavors nf =0, 2, 3.
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268

269

Figure (4) shows  the theoretical calculation of the EoS using Mayer's expansion270

theory; from eq. (19) at different number of quark flavors nf = 0, 2, 3.271

In the present calculations the critical temperature is taken as, Tc = 0.2 GeV. The272

solid line and the different dashed lines represent the theoretical calculations by using273

Mayer's cluster expansion theory and the symbols are the lattice results. It is clear that, a274

suitable qualitative agreement between the theoretical calculation and the lattice results275

especially at the intermediate temperature range at nf = 0. While at nf = 2,  it is clear that276

the present theoretical calculation does not match the lattice results. However, at nf =3277

a qualitative agreement between the present calculations and the lattice results are278

obtained.279

Generally one can conclude that, the Mayer's cluster expansion theory is more280

suitable to study a weakly coupled plasma, while the QGP may be strongly coupled281

plasma [14].282
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Fig. (4) The equation of state P/T4 versus T/Tc, Tc= 200 MeV, (solid
and dashed lines) are the theoretical calculations and (symbols) are
the lattice results [24, 43].
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299

Figure (5) shows the calculated energy density  /T4 by using Mayer's cluster300

expansion theory at different number of quark flavors, nf = 0, 2, 3 versus T/Tc . The solid301

and dashed lines are the theoretical calculations and the symbols are the lattice results.302

From this fig. one can see that, at nf =0 , a qualitative agreement  between the present303

calculations and the lattice results is obtained at high temperatures, but  at T< 2Tc the304

theoretical calculation does not match the lattice results. While at nf =2 it is clear that,305

the theoretical calculations does not give agreement with the lattice results at small306

temperature range. But at nf =3 it is clear  that, the theoretical calculation matches with307

the lattice results especially at high temperature range.308
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In the present work the plasma parameter is calculated quantum mechanically using325

the wave function produced from the numerical solution of the Schrödinger equation for326

quarkonium bound state system. Figure (6) shows the behavior of the calculated plasma327

parameter )(T using the internal energy potential. It is clear that, the largest value at328

T/Tc 1, and tends to zero at very high temperature T/Tc 5.329

Fig. (5) The equation of state  /T4 versus T/Tc, Tc= 200 MeV, (solid
& dashed lines) are the theoretical calculations and (symbols) are
the lattice results [22, 43].
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Equations (31) are used to calculate the EoS by using a phenomenological330

thermodynamic model. Figure (7) shows the present calculations of the equation of state331

(EoS) versus T/Tc at different number of quark flavors (nf = 0, 2, 3) in comparison with332

the theoretical calculations of the Cornell potential [27] and the lattice results .333

From this figure, one can see that, the present calculations of the EoS using the334

internal energy potential give more agreement with the lattice results than the Cornell335

potential calculations at nf = 0 ,3. But at nf = 2 it is clear that, the Cornell potential336

calculations give more agreement in this case with the lattice results.337

The behavior of the energy density 4/T versus T/Tc is calculated by using338

equation (30), at different number of quark flavors, nf = (0, 2, 3).339

In figure (8), the solid lines represent the present calculations of the EoS by using340

the internal energy potential, the dashed lines are the theoretical calculations by using341

Cornell potential [27], and the symbols are the lattice results [27, 44, 45].342

From figure (8) one can see that, the present calculations using the modified343

internal energy potential give a satisfied agreement at all temperature range with the344

lattice results compared with  the Cornell potential calculations, especially at nf = 0,3.345

While at nf = 2 the Cornell potential calculations give a slight better fit with the lattice346

results.347
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360 Fig. (6) The plasma parameter )(T versus T/Tc calculated by
the internal energy potential.
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Fig. (7) The equation of state P/T4 versus T/Tc, Tc= 200 MeV, (solid
lines) are the theoretical calculations, dashed lines are the EoS
calculated by Cornell potential and (symbols) are the lattice results
[27,43].
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EoS calculated by Cornell potential and (symbols) are the lattice
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392

393

394

Once the pressure (P) and the energy density (  ) are calculated, one can calculate395

the trace anomaly or the interaction measure quantity (  ), which is one of the most396

important quantities in the studying of the quark-gluon plasma  phase transition.397

In figure (9) the interaction measure; 4

3
T
P


 ;  is plotted versus T/Tc with the lattice398

results [27, 44]. In this figure we have calculated the deviation between the energy399
density  of the QGP system and the corresponding one in case of the ideal gas plasma400

( 
3
1
P ).  From this figure one can see that, though  Tends to zero for large values of401

T, it still possesses a non-zero value up to  T = 3 Tc [2, 45].402
403
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409

410

411

412

413

414

415

Conclusion416

In this work, we introduce a linear term to the internal energy potential function.417

This modification provided a linear part within the effect of the screening term in both418

parts of the free energy function. Then we have studied the applicability of using this419

Fig. (9) The deviation
4
3
T
P




 versus T/Tc, the solid line is the

theoretical calculations and the symbols are the lattice results [44].
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potential form to the dissociations of cc and bb systems,  and the study of the equation420

of state for such matter. From these calculations, the Mayer’s cluster expansion theory421

has shown poor fit with the lattice results. So that, Mayer’s cluster expansion may be422

more suitable to study a weakly coupled plasma while the QGP may be considered as a423

strongly interacting plasma.424

The thermodynamic model calculations depending on the plasma parameter )(T425

have shown a reasonable fit at low and high temperatures with the lattice results.426

Therefore, this phenomenological model is more applicable to describe the EoS of the427

QGP matter rather than the Mayer’s cluster expansion theory. Finally, for updating the428

present work theoretically, comparing with the recent lattice is more probable [46, 47].429

430
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