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ABSTRACT  11 
 12 
Instead of electric charge, as the basic substance of EM theory, respective static potential, 
as some energetic fluid – in the dielectric, non-resistive and reactive medium – is here taken 
as the starting quantity. All the remaining EM quantities are thus defined in the succession, 
by the standard differential equations, with algebraic relations and central laws derived as 
their formal consequences. Not only that majority of the former results are confirmed, but 
some of them are completed, rationally interpreted and mutually related. On the other hand, 
a few formal concepts appear as inadequate or excessive at least. 
 13 
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1. INTRODUCTION  16 
 17 
EM forces are ascribed to electricity, as the bipolar substance. Elementary forces between 18 
two charges, in the functions of their mutual position, simultaneous motion and acceleration 19 
of one of them, are to be expressed by respective central laws. On one hand, these laws 20 
should be generalized into algebraic relations between moving bodies – as the carriers and 21 
objects, and – on the other, into respective differential relations in the medium. Not only that 22 
such two-directional development is very complicated, but it is only incompletely carried out 23 
in [1]. Apart from convincing explanation of already known intuitive and empirical relations, 24 
remaining problems are mainly resolved in [2], with consistent fillings in of the inherited gaps. 25 
Instead, successive introduction and relation of EM quantities here starts from the static 26 
potential, as some energetic fluid, at least in the conditional sense.  27 
 28 
Bipolar static potential, as some electric disturbances around carrying charges, is projected 29 
from 4D space, along temporal axis [3]. Tending to the absolute medium homogeneity and 30 
neutrality [4], two equipolar particles mutually repel, and opposite ones attract each other. A 31 
moving potential is followed by the medium polarization, as the opposite reaction. Its own 32 
variations form respective displacement currents. Being elastically restricted by the medium, 33 
these currents demand the continual motion of the carriers through 3D/4D space. Such two 34 
parallel currents interact by transverse kinetic forces, expressed by magnetic field. Against 35 
their variation, the medium reacts by the dynamic forces, as induction or inertia, proportional 36 
to its own density. The speed of propagation is determined by the product of the two medium 37 
features, its density (µ)  and elasticity (ε) : c 1/ εµ= .  38 

 39 
After successive introduction of the standard differential equations, relating EM fields and/or 40 
potentials on the three kinematical states, their carriers and objects, as the moving bodies, 41 
are then related algebraically. In the final instance, central laws determine the elementary 42 
interactions of two punctual charges, in the functions of their respective kinematical relations: 43 
mutual position, simultaneous motion and acceleration of at least one of them. The two latter 44 
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basic sets are elaborated and completed. All their equations are finally formulated, and the 45 
ranges of their application precisely determined. With mutual relation of the known, so far as 46 
if independent empirical facts and/or particular mathematical relations, a few nearly forgotten 47 
problematic experimental results are convincingly explained. The completed, consistent and 48 
convincing EM theory is thus obtained and briefly presented.  49 
 50 
2. STATIC RELATIONS 51 
 52 
The static potential is proportional to the energy density. Its own gradient is balanced by the 53 
opposite medium polarization. With respect to the inverse field function, it is denser around 54 
smaller (positive), and sparser around greater (negative) particles. Tending to the medium 55 
homogeneity, equipolar particles mutually repel, and opposite ones attract each other. One 56 
medium strain, as the elementary potential, provides the energy for all other such strains, as 57 
the objects. This potential determines the static field (1a), as the medium stress. Depending 58 
on the medium elasticity and this field, some electric displacement (1b) is thus formed, and 59 
its divergence just represents the carrying charge (1c):  60 
 61 

Φ∇ = −E ,                       ε =E D  ,                      Q∇⋅ =D .                         (1)       62 
 63 
Each new member of the four static quantities is the formal feature of the preceding one. 64 
The static field is the mere gradient of respective potential. The field line beginnings are 65 
considered as positive, and terminals – as negative charges. Thus introduced, the static 66 
quantities are the bases for following definition of kinetic ones.  67 
 68 
3. KINETIC RELATIONS 69 
 70 
3.1 Convective Phase  71 
 72 
This phase of the kinetic interactions concerns the production of kinetic, by motion of static 73 
quantities. The medium non-resistance enables the smooth displacement currents, at motion 74 
of the static quantities through 3D space or along temporal axis. In parallel with the current 75 
field defined (2a), the common motion of static potential, as the medium strain, forms kinetic 76 
potential (2b), as respective linear momentum density: 77 
 78 

 Q=J V ,                                    Φ= εµA V .                                   (2) 79 
 80 
The product of the elasticity, density and strain disturbance, gives the density disturbance 81 
(εµ )Φ , and its motion represents the kinetic potential ( )A . The moving charges and their 82 
potentials form the two collinear quantities: electric current and kinetic potential. At motion of 83 
the negative static quantities, the two kinetic are opposite. 84 
 85 
Starting from (2), as the two definitions of kinetic, – by motion of static quantities, let us now 86 
determine respective two continuity equations. Div-operation applied to (2) gives these two 87 
equations, via the sums of respective middle terms: 88 
 89 

 tQ Q Q∇⋅ = ∇⋅ + ⋅∇ = − ∂J V V ,                                             (3a) 90 
 91 

 εµ ( )  εµ tΦ Φ Φ∇⋅ = ∇⋅ + ⋅∇ = − ∂A V V .                                       (3b) 92 
 93 
Dilatations and convections of the two static, form respective kinetic quantities. The static 94 
potential carried by respective charge behaves as a rigid structure, of the homogeneous 95 
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speed. The former terms thus annul, with the convective derivatives ( )t⋅∇ = − ∂V  – in the 96 
latter terms. Of course, it is opposite to the moving gradient. 97 
 98 
In analogy with Bernoulli’s effect in fluids, two parallel flows interact by transverse kinetic 99 
forces, and crosswise ones – by respective torques [4]. Both these interactions, conditioned 100 
by the transverse gradient or curl of the kinetic potential (2b), are determined by magnetic 101 
field (4a). On the other hand, its own curl will be soon identified as the total current field (4c), 102 
flowing in the conducting and dielectric structural layers. 103 
 104 

 ∇× =A B ,                   µ=B H ,                   t∇× = + ∂H J D .                        (4)              105 
 106 
The total field depends on the medium density (4b). The force fields ( , )E B , introduced via 107 

potentials (1a,4a), are called covariant, and two rational ( , )D H  – related with the carriers 108 
(1c,4c), – contra-variant. The constitutive relations (1b,4b) point to their cross-classification: 109 
the total fields ( , )D B  and their vacuum components ( , )E H . At least in the homogeneous 110 
isotropic media, the two constants are scalar quantities.  111 
 112 
Each new kinetic quantity is the formal feature of preceding one. The magnetic field, as the 113 
intermediate quantity, is perpendicular to the external two, usually mutually collinear, kinetic 114 
quantities. Alike the relations (2) – of the carriers or potentials, the intermediate quantities 115 
are similarly related. The substitution of (2b) into (4a) gives: 116 
 117 

 εµ( ) µΦ Φ= ∇× − ×∇ = ×B V V V D ,                      = ×H V D .                        (5) 118 
 119 
At motion of rigid, stably oriented static quantities, the former middle term annuls. In accord 120 
with (1a), the latter term gives the kinetic convective relation (5b). A moving electric, forms 121 
respective magnetic field, causing the transverse kinetic forces. Really, curl applied to (5b), 122 
excluding spatial derivatives of the field speed, gives (4c): 123 
 124 

  t∇× = ∇⋅ − ⋅∇ = + ∂H V D V D J D .                                           (6) 125 
 126 
Here Q∇⋅ = =V D V J  is the current of free electricity, and t⋅∇ = − ∂V D D  – the convective 127 
derivative of electric displacement, or respective current. 128 
 129 
3.2 Relative Phase  130 
 131 
The relative phase concerns the actions of kinetic fields upon moving static, or respective 132 
kinetic quantities. Apart from the present kinetic fields, respective forces also depend on the 133 
object motion. The interaction of the two kinetic potentials or respective currents, at least in 134 
their parallel position, may be expressed by the two equivalent (nominally – static, but in fact 135 
– kinetic) quantities, the potential and respective charge: 136 
 137 

kΦ = − ⋅v A ,                                    k  εµQ = − ⋅v J .                                (7) 138 
 139 
This pair of equations is formally inverse to the definitions (2), with the opposite signs, and 140 
the product εµ  – consequently replaced. They concern only the parallel motion, but speak 141 

nothing about the torque between crosswise currents. Negative signs point to the transverse 142 
attraction in the parallel motion. Grad applied to (7a), without spatial derivatives of punctual 143 
object speed, gives the equivalent (kinetic) electric field: 144 
 145 
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k   = ×∇× + ⋅∇ = ×E v A v A v B .                                             (8) 146 
 147 
Longitudinal gradient of the unidirectional potential equals to its divergence. In the case of 148 
two moving charges, with the divergence (3b) – of the potential, the latter term thus tends to 149 
equalize the two speeds. It forms the torque acting on the ‘dipole’ consisting of two charges 150 
moving at their different speeds. In the case of a line current, with longitudinal homogeneity 151 
of its kinetic potential ( 0)∇⋅ =A , the latter term annuls. 152 
 153 
At transverse object speeds, when ∇ = ∇× =A A B , the two terms (8) cancel each other, in 154 
accord with the defective sense of (7). Therefore, the latter term must be finally missed. The 155 
remaining term causes a torque tending to the same courses of the two crosswise currents. 156 
Div operation applied to (8) gives the equivalent charge: 157 
 158 

k ε ( )Q = ⋅∇× − ⋅∇×B v v B .                                                (9) 159 
 160 
The condition of the zero charge points to circular motion of a free charge around magnetic 161 
field. This is expressed by curl of the object speed – in the former term. At rectilinear motion 162 
– this term annuls, and the letter term just returns to (7b).  163 
 164 
4. DYNAMIC RELATIONS 165 
 166 
With respect to reactive medium, time derivative of the kinetic potential, as linear momentum 167 
density, gives the dynamic forces, expressed by electric field: 168 
 169 

t= −∂E A ,                                    t∇× = −∂E B .                               (10) 170 
 171 
Curl applied to (10a), with respect to (4a), gives (10b). On the other hand, div applied to (4a) 172 
gives the trivial Maxwell’s equation: 0∇⋅ =B . It only speaks against existence of the free 173 
magnetic poles and respective non-vortical field.  174 
 175 
The kinetic potential and magnetic field are the two perpendicular vortical fields, With their 176 
gradient perpendicular to the common surface. The motion in this direction varies them at a 177 
resting point, with production of the dynamic field (10a): 178 
 179 

  t= − ∂ = ⋅∇ = ×E A U A B U  .                                             (11) 180 
 181 
Here U  is the transverse speed of the kinetic potential and magnetic field, restricted to the 182 
field line plains, where ∇ = ∇× =A A B . Really, in the inverse mathematical sense, curl 183 
applied to the external equality of (11) just gives (10b): 184 
 185 

  t∇× = ⋅∇ − ∇⋅ = −∂E U B U B B  .                                          (12) 186 
 187 
The speed derivatives of the rigid magnetic field – stably oriented in space – are missed. 188 
Magnetic field moving along its gradient, in its own field line planes, induces the dynamic 189 
forces, represented by respective electric field (11).  190 
 191 
5. DIFFERENTIAL SET 192 
 193 
5.1 Basic Equations   194 

 195 
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The three differential pairs – static (1a,c), kinetic (4a,c) and dynamic (10) – taken together 196 
form the two subsets: gauge conditions (13) and Maxwell’s equations (14). The former set 197 
defines the fields by potentials, and latter – the carriers by fields. In fact, the fields are formal 198 
features of respective potentials, and the carriers – of fields.  199 
 200 

sΦ−∇ = E ,                       ∇× =A B ,                      dt−∂ =A E ;                        (13) 201 
       202 

Q∇⋅ =D ,                   t∇× − ∂ =H D J ,              t∇× + ∂ =E B 0 .                     (14)          203 
       204 

Owing to their distinct origins, static and dynamic fields demand respective indexes (13a,c). 205 
With respect to their geometrical forms, these indexes are excessive in (14a,c). Unlike the 206 
former EM theory, founded on electricity and its currents, the two potentials appear as the 207 
most relevant EM quantities. Describing the energetic states of the medium, they are the 208 
starting notions in this brief presentation of EM theory. 209 
 210 
The three pairs of the equations concern mutual differential relations of the quantities on 211 
respective three kinematical states – static, kinetic and dynamic – being dependent on the 212 
presence, motion or acceleration, respectively, of the three static quantities. Apart from the 213 
two potentials, time derivative of the kinetic potential may be taken as the dynamic potential. 214 
Irrespective of the trivial one, 0∇⋅ =B , three relevant Maxwell’s equations, in common with 215 
respective gauge conditions, form the hierarchical trinity. 216 
 217 
5.2 Field Tensors  218 
 219 
The two pairs of Maxwell’s equations (static & kinetic with trivial & dynamic) in their compo-220 
nential forms represent the two sets of four partial differential equations each. With general 221 
ordinal indexation, they form the two tensor equations: 222 
 223 

n n mn mR JΣ ∂ = ,                             0n n mnFΣ ∂ = .                                (15) 224 
 225 
Here 0 1 2 3m , , ,=  is the ordinal number of the equations, with the summation of the terms per 226 
the index n m≠ . The electric charge carried by the cosmic expansion along temporal axis 227 
forms respective current component o( )J . In the absence of the free magnetic poles and 228 
respective currents, the latter equation fails of the free term. The field components are 229 
identified by the two following tensors, as the bi-vectors: 230 
 231 
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 233 
They express all the field components, the former – of rational ( , )mnR D H= , and latter – of 234 

the force fields ( , )mnF B E= . Their formal distinction, as contra-variant and co-variant, is 235 
neglected. The six term pairs accord to the six planes, as the field locations. The first rows 236 
and columns concern longitudinal planes ( tx , ty , tz ) – in the temporal, and remaining sub-237 

tensors – transverse planes ( xy , yz , zx ) – in spatial domains. Due to disparate term signs, 238 
these two tensors cannot be dually related even at vacuum. 239 
 240 
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Each tensor affirms 4D space, as the ambient of EM phenomena. The opposite positions of 241 
the rational and force fields point to the two structural levels, electric and magnetic ones. 242 
With respect to the apparent – electric, and transparent magnetic poles, the former tensor is 243 
more relevant. Therefore, EM potentials, forming 4D vector, belong to the four axes: static to 244 
t , and kinetic to x , y , z . The field carriers, as the tri-vector, belong to respective 3D sub-245 

spaces. The projection into 3D reduces -t axis into the scalar time, and electric quantities 246 
(from respective subspaces) lose this one dimension. 247 
 248 
5.3 Derived Equations   249 
 250 
Apart from the three relevant Maxwell’s equations and respective gauge conditions, relating 251 
the successive ranks of EM quantities, the carriers and potentials can be related directly, by 252 
the two Riemannian, second order differential equations:  253 
 254 

2 2 εµ  /εt QΦ Φ∂ −∇ = ,                          2 2 εµ  µt∂ − ∇ =A A J .                        (17) 255 
 256 
With respect to (3b), (14a) applied to the sum of (13a,c) relates the two electric quantities, 257 
charge and static potential (17a). With respect to (2b), (17a) multiplied by εµV  gives (17b). 258 
Their temporal terms arise from dynamic, and spatial – from static electric fields. Maxwell’s 259 
equations understand both electric fields s d( )+E E , speaking in favour of their final unity in 260 

-tr planes. At dielectric media, without free electricity and current, these two reduce into the 261 

wave equations, with the known solution: / εµ cr t t= =  . 262 

 263 
The moving fields carry their energies. Dot multiplication of the kinetic Maxwell’s equation by 264 
E , and of dynamic one – by H , with subtraction of the latter from former results, gives a 5D 265 
continuity equation, with the spatial, temporal and substantial terms. As such, it affirms a 266 
structural dimension, as the fifth. EM phenomena thus develop in and/or between the four 267 
structural layers: vacuum, dielectric, magnetic & conducting ones. 268 
 269 

( )  0tW∇⋅ × + ∂ + ⋅ =E H E J ,                      2  c= × = ×S E H D B .                   (18) 270 

 271 
The equation (18a) is well-known as Poynting’s theorem. Its temporal term expresses the 272 
variation of energy density, and substantial one ( )⋅ = ⋅E J F V  – the power of its dissipation. 273 
This term may be understood as the energy dislocation along the fifth axis, from one into 274 
another structural layers. Cross product of the two fields, in the spatial term, is the current 275 
field ( )S  of EM energy (18b).  In comparison with Einstein’s equation, the product of the 276 
two total fields is equivalent with the linear momentum density.  277 
 278 
6. ALGEBRAIC SET 279 
 280 
6.1 Basic Equations 281 
 282 
The algebraic equations, derived from differential ones, may be taken as the basic set. The 283 
associated total fields, moving in common with their carriers, produce dissimilar vacuum 284 
fields (19): transverse motion of one, produces the other EM field. Apart from the electric 285 
field (19b), affecting all present electricity – in the field line direction, the magnetic field (19a) 286 
acts kinetically on moving electricity or respective current, by magnetic, – or equivalent 287 
electric field (20a). And finally, two EM fields – mutually causally related by (19) – form the 288 
energetic current (20b), perpendicular to the related fields. 289 
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 290 
= ×H V D ,                            = ×E B U ;                                      (19) 291 

           292 

k = ×E v B  ,                             = ×S E H .                                     (20) 293 
 294 
Though formally similar, the two relations (19) are distinctly restricted. With respect to the 295 
differential elaboration, a field motion is effective only along the field gradient. Unlike non-296 
vortical fields, generally inhomogeneous in any direction, the gradients of vortical fields are 297 
usually restricted to the field line planes. Excluding electro-static, this restriction concerns 298 
both – magnetic and electro-dynamic – moving fields.  299 
 300 
The simplest technical basis, convenient for the measurement and consideration, is the 301 
motion and mutual affection of the line – current carrying and object – conductors. The free 302 
electrons and their electric fields, moving along a conductor, form magnetic field (19a). This 303 
is the case irrespective of the resting protons and their associated fields, compensating only 304 
statically the moving fields. Transverse motion of the carrying conductor, in the planes of 305 
magnetic field lines, causes the longitudinal induction (19b). In fact, the moving field gradient 306 
changes the field in the observed locations, with respective medium reaction. Similar effect 307 
arises around a variable current, as the accelerated electricity, causing the circular magnetic 308 
field, expanding or shrinking radially. These contractions cause the longitudinal inductions in 309 
parallel conductors, including the carrying conductor itself. 310 
 311 
On the other hand, the relative relation (20a) is effective in any direction – perpendicular to 312 
magnetic field. A parallel object conductor – moving transversally – suffers the longitudinal 313 
induction, and vice versa. Two parallel currents thus attract, and anti-parallel – repel each 314 
other. Consequently, by such interactions in the pairs of their legs, two crosswise conductors 315 
tend to the same courses of their currents. A punctual object charge is thus compelled to the 316 
circular motion, around a tube of the present magnetic field.  317 
 318 
The two convective relations (19) were initially emphasized by J. J. Thomson. With respect 319 
to the neglected spatial derivatives of the field speeds, during their derivation – from the 320 
differential set, this pair is restricted to the rigid moving fields stably oriented in space. The 321 
moving fields form the gyroscopes in common with their apparent elementary carriers. In the 322 
absence of this explanation, the two convective relations seemed to be nearly problematic. 323 
In spite of their simple forms and practical evidences, they have so far been neglected in the 324 
standard presentations of EM theory, as possible basic laws. 325 
 326 
6.2 Derived Equations  327 
 328 
Above basic relations are combined in various practical situations. In the case of two parallel 329 
conductors, one of them with its free electricity, and the other with its current and magnetic 330 
field (19a), moving transversally – along the field gradient, the dynamic (19b) and kinetic 331 
(20a) inductions superimpose (21). On the basis of this case, the principle of relativity is 332 
understood, calculating by the mutual speed: ' = −v v U . However, in the case of the two 333 
crosswise conductors, at motion along the current, in the direction of the field homogeneity, 334 
the dynamic induction (19b) fails, and (21) reduces to (20a). 335 

 336 

kd  ( )= − ×E v U B .                                                     (21) 337 
 338 
In the case of a dielectric medium, without free electricity and conduction currents, the two 339 
moving fields can form EM wave only. The substitution of (19a) into (19b), or vice versa, 340 
gives (22a/b). Their former terms concern the collinear speeds of the two transverse EM 341 
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fields. The latter terms express the boundary region of the wave beam, with the longitudinal 342 
direction of one of the two fields. With respect to the energetic current (20b), these terms 343 
express transverse expansion or diffraction of the wave beam. 344 

 345 
εµ[( ( ) ]= ⋅ − ⋅E U V)E E U V ,                  εµ[( ( ) ]= ⋅ − ⋅H U V)H H V U .                  (22) 346 

 347 
The kinetic interactions of two moving (punctual or distributed) charges is achieved by the 348 
production of magnetic field – at motion of one, and action of this field on the other moving 349 
charge. In this sense, (19a) substituted into (20a) gives:  350 

 351 

k  µ[( ) ( ) ]= ⋅ − ⋅E v D V v V D .                                              (23a)  352 
            353 

The double cross product resolves the interaction into the two vector components: axial and 354 
radial ones. Though both obey the force symmetry, ( ) ( )− = −f r f r , the axial interaction would 355 
produce some torque on a moving dipole consisting of the two mutually connected charges. 356 
In fact, the above made substitution implicitly understood resting magnetic field of a moving 357 
charge. Its indispensable motion is taken into account by substitution of (19a) into (21), thus 358 
obtaining the adequate, more complex equation:  359 

 360 

kd  µ [( ) ] µ[( ) ]= − ⋅ − − ⋅E v U D V v U V D .                                    (23b)    361 
 362 

The zero torque on a dipole moving at the common speed ( )=V v  is satisfied by the zero 363 

axial force, and this one – by the transverse field speed, U V cotθ= , where θ  is the polar 364 
angle between moving electric field and its speed. Magnetic field lines expand in the front, 365 
and shrink behind the carrying charge. This result can be interpreted and confirmed by the 366 
transverse convective derivative of a moving central potential: 367 

 368 

     
xy y x

U V Vcot
yt x t

θ∂ ∂ ∂= = − = =
∂ ∂ ∂

.                                     (24) 369 

 370 
As in (3), the convective derivative is opposite to the moving gradient, where / /y x x y∂ ∂ = −  is 371 

the derivative of a moving circle: 2 2 2x y r+ = . The transverse gradient of the moving static 372 
potential (2b) is nothing else than magnetic field (13b). 373 
 374 
The moving fields carry by themselves their energies. In this sense, the substitution of (19) 375 
into (20b) gives two respective energetic currents:  376 

 377 

e ( ) ( )= ⋅ − ⋅S E D V V E D ,                     m ( ) ( )= ⋅ − ⋅S H B U U H B .                    (25) 378 
 379 
Their former terms express the two main currents, and two latter – accessory ones, existent 380 
in respective physical processes. In the case of EM waves, these terms have the same roles 381 
as respective terms of (22). In the open causal processes, with only one moving field, one of 382 
the two equations (25) is applied. Around a moving punctual charge, with the transverse 383 
motion of its magnetic field (24), the latter term of (25b) annuls. 384 
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 385 
7. CENTRAL LAWS 386 
 387 
7.1 Static Law 388 
 389 
The elementary EM interactions are caused by the presence, motion and acceleration of the 390 
punctual charges. At first, the application of the static equation (14a) to such a carrying 391 
charge 1( )q  gives the force acting on similar object 2( )q , or vice versa. One of the charges 392 
thus affects the other, in accord with the static central law: 393 

 394 
2

s o o /εµ  cn n= =f r r ,                         2
1 2 1 2 /4 ,n q q r= µ π .                           (26) 395 

 396 
The factor n  simplifies the equations and enables their comparison. Radial integration of this 397 
force gives respective potential energy, expressed by the alternative static law (27), with the 398 
new factor m nr= , determining the induction or self-induction: 399 

 400 
2 /  cw m m= εµ = ,                   2 µ /4m q r= π .                            (27) 401 

 402 
This is Einstein’s equation, with the factor ( )m  – of self-induction, as the proper mass. As 403 
the condition of the two laws (26a,27a) equivalence, (27b) is the basis for calculation of the 404 
particle radius. It thus expresses the proper particle mass, where r  denotes its radius, as 405 
the distance of the surface charge from its own centre. 406 
 407 
With respect to (27b), a lesser charged particle is of the greater mass and energy, and vice 408 
versa. This fact points to indispensable location of the mass and energy in the surrounding 409 
electric field. If this mass were equivalent to the inertial mass, a complex – globally neutral – 410 
body, as the structural multi-pole, would manifest the resultant summary mass of all its 411 
constituent poles. Owing to cancelation of the distant fields of the opposite poles in the multi-412 
pole, this sum is slightly defected. There is very difficult to believe that possibly exists some 413 
another cause of the inertial mass and respective forces. 414 
 415 
7.2 Kinetic Law 416 
 417 
The substitution of the transverse speed (24) of magnetic field into the combined force (23b) 418 
gives this force resolved into the following three terms: 419 

 420 

kd t l l t l[( ) ]nV v v sin Vcosθ θ= − −f i i i .                                           (28) 421 
 422 

The two former components represent the kinetic force (20a) acting on an object charge 423 
moving through the resting magnetic field. Apart from the carrier, it also depends on the 424 
object motion, or – on that of a detector substituting the object. In the case of the two parallel 425 
speeds t( 0)v = , it is restricted to the transverse component: 426 
 427 

kd t l( )nV vsin Vcosθ θ= − +f i i .                                               (29) 428 
 429 
The last force component, of the dynamic field (11) – directed towards the moving charge, 430 
from both axial sides – is independent of the object (or respective detector) motion. Affecting 431 
all present charges, it looks as an associated wave period. Subtracted from the static field – 432 
extracted from (26), it gives the ellipsoidal field deformation, initially somehow predicted by 433 
H. A. Lorentz, without a needed causal explanation. 434 
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 435 
Radial integration of (29) gives the mutual kinetic energy (30). In such the ellipsoidal form, 436 
this energy depends on the angle of integration. 437 

 438 
2 2 ( )w mV v sin Vcosθ θ= − + .                                                (30) 439 

 440 
In the case of the equal speeds of the field carrier and its object, the force (29) and energy 441 
(30) reduce into respective, centrally symmetric forms: 442 

 443 

o ( )n= − ⋅f V v r ,                           w m= − ⋅V v  .                               (31) 444 
 445 
Though mutually equal – in this particular case, the two speeds keep their distinct roles, 446 
concerning the carrier or object. Apart from the force symmetry, this case also satisfies the 447 
zero torque on a moving dipole. The comparison with (26a,27a) identifies the static laws as 448 
the particular cases of these ones, at the speed ic  – of all the particles. This analogy points 449 
to a common motion along temporal axis, possibly related with the cosmic expansion. The 450 
imaginary unit (i)  points to some circulation in -tr planes. 451 

 452 
7.3 Mass Variation 453 
 454 
Affecting in return the carrier itself (at =V v  thus understood), the combined central force 455 
(31a) is subtracted from the static force (26). Thus obtained total force is evenly distributed 456 
about the particle surface, forming respective pressure: 457 

 458 
2 2 2 2 2 2 2

tot  (c ) c (1 /c ) cf n v n v n g= − = − = .                                           (32) 459 
 460 
The factor n  depends on the radius, and g  – on speed. Tending to zero approaching the 461 

speed c , from 2
o ocf n= , where o o( )n n r=  – at rest, this force strives to expand the particle. 462 

This is controlled by the opposite internal reaction of the polarized medium, the same as at 463 
rest. The balance o( )f f=  gives the two following relations: 464 

 465 

o r r g= ,                                       o /m m g= .                                    (33) 466 
 467 
The latter of them is nothing else but Lorentz’ mass function, estimated on the empirical 468 
bases. It is here derived directly, by the simple theoretical procedure. Thus dependent on 469 
speed, mass is minimal when resting in a preferred frame! This frame, as the basis for the 470 
speed determination, is somehow related with the medium [4]. 471 
 472 
The mass function (33b) further confirms the above reduction of inertia to induction. As such, 473 
it was the known basis for indirect derivation of Einstein’s equation (27a). According to the 474 
mass function, there finally follows its differential (34a). The further formal procedure gives 475 
the proper kinetic energy of a moving (charged) particle: 476 

 477 
2 2/(c )m mv v v∂ = ∂ − ,                              2 2c m mv v v m∂ = ∂ + ∂ :                        (34) 478 

 479 

k    ( )w p t vf t v mv∂ = ∂ = ∂ = ∂ ,               2 2( )    cv mv mv v v m m∂ = ∂ + ∂ = ∂ ;                (35) 480 
 481 

2
k o o  ( )cw w w m m= − = − ,                    2

o o (1/ 1/ )/4πεw w q r r− = − .                    (36) 482 
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 483 
Assuming the constant mass ( 0)m∂ = , with annulment of the latter term in (35b), the former 484 

term integral gives the classical kinetic energy 2( /2)mv . The complete integral gives (36a). 485 
The substitution of (27b) relates the kinetic energy with that of the electric field between the 486 
two radii, – of the moving and resting particle (36b).  487 
 488 
7.4 Dynamic Law 489 
 490 
Variation in time of the kinetic energy can be caused only by acceleration or deceleration of 491 
the carrier. In this sense, time derivative of (31b), partially – per mV , gives the power of the 492 
energy transfer – on the left of (37a). The two speeds of the same particle just concern its 493 
two roles, – of the field carrier ( )qV  and object ( )qv . 494 

 495 

d( )t k tw m∂ = ⋅∂ = − ⋅v V v f ,                        d ( )t m= −∂f V .                          (37) 496 
 497 
On the other hand, the same power equals to the negative scalar product of the object 498 
speed and reactive dynamic force – in continuation. The reduction finally gives force action 499 
law (37b), dependent on the variable mass and its acceleration. 500 
 501 
With respect to (33b) and its derivative (34a), the dynamic force can be further elaborated, 502 
with the linear momentum as the product of the three factors: 503 

 504 

o o o o( )  t t t tmv v m m v mv∂ = ∂ + ∂ + ∂v v v v  .                                      (38) 505 
 506 
Here v  is the speed modulus, and ov  – unit vector. The two former terms are transformed 507 
into inertial, and latter one gives well-known centrifugal forces: 508 

 509 

i o o o2  
m v v m v

v m
v t t tg

∂ ∂ ∂ ∂= − − = −
∂ ∂ ∂ ∂

f v v v ,                                   (39) 510 

      511 
2

o o
c o     

s mv
mv mv

t s t r
∂ ∂ ∂= − = − =
∂ ∂ ∂
v v

f r .                                  (40) 512 

 513 
Here or=r r  is the path curvature radius. Both force components are additionally scaled, by 514 
the variable mass. Instead of the two different masses estimated empirically, there are just 515 
the two distinct functions of the same variable mass.  516 
 517 
The former force changes the energy of the moving body, and latter one only strives to strait 518 
motion. The former of them may be understood as the difference of the opposite dynamic 519 
forces from (29), being unequal at acceleration. On the other hand, the transverse direction 520 
of the centrifugal force, and its independence of the linear acceleration, point to its kinetic 521 
nature. The terms ‘static, kinetic & dynamic’ are here used in the relative sense, dependent 522 
on the observed objects and respective levels of observation. 523 
 524 
8. CONCLUSIONS 525 
 526 
1. EM quantities and standard differential equations are introduced in the axiomatic order, 527 
starting from the static potential and its linear motion. 2. The four algebraic relations are thus 528 
reaffirmed, re-examined and prepared for application. 3. On the basis of the magnetic field 529 
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motion, the general kinetic law is finally formulated. 4. These considerations mutually relate 530 
a number of former independent results: Coulomb’s law, Einstein’s equation, classical radius 531 
and EM mass, EM induction, force action law, inertial and centrifugal forces, mass function, 532 
mass defect, associated wave and the ellipsoidal field deformation. 5. The three basic sets 533 
supplement each other in the interpretations and applications. 6. The principle of relativity 534 
and assumption of elementary mass are convincingly called in question. 535 
 536 
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