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Abstract: Global finite time synchronization of a class of combination-combination 

chaotic systems via master-slave coupling is investigated. A nonlinear feedback 

controller and a continuous generalized linear state-error feedback controller with 

simple structure are introduced into the synchronization scheme. They are applied to a 

practical master-slave synchronization scheme for combination-combination systems, 

which consists of the Chen chaotic system, hyperchaotic Chen system and 

hyperchaotic Lorenz system. Numerical simulations are provided to illustrate the 

effectiveness of the new synchronization criteria. Based on the proposed 

synchronization, a scheme of secure communication is then established and the 

continuous or digital signals are transmitted by the chaotic mask method. Finally, 

simulation examples show that the transmitted message can be recovered successfully 

in the receiver end.  
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1 Introduction 

  Chaos is really an interesting phenomenon in nonlinear science. It is especially high 

sensitive to the initial conditions and attracts many researchers’ attentions. In the past 

two decades, many methods of chaos asymptotical synchronization have been 

investigated, such as active control[1], adaptive control[2], state feedback control[3], 

backstepping control[4], and sliding mode control[5]. The asymptotical 
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synchronization mentioned here means that two (or many) chaotic systems actually 

evolve and consentaneously reach the defined conditions, e.g., equality of the 

systems’ state variables, as the time goes to infinity.  

In real-world applications, however, it is often desired that synchronization of 

chaotic systems should be achieved in finite-time as small as possible. Recently, some 

finite-time control techniques have been applied to synchronize the master-slave 

chaotic systems in finite-time, e.g., Yang and Wu investigates the global finite time 

synchronization of a class of the second-order nonautonomous chaotic systems via a 

master-slave coupling and a continuous generalized linear state-error feedback 

controller with simple structure is introduced into the synchronization scheme[6], the 

terminal sliding-mode control technique[7], the active control technique[8], and the 

observer-based control technique[9], and so forth. 

  This paper introduces a nonlinear feedback controller and a so-called generalized 

linear state-error feedback controller into a master-slave synchronization scheme for 

the high-order (third and forth) chaotic systems to make the scheme synchronize in 

finite-time. Much different from the other synchronization of chaotic systems, we 

propose three chaotic systems as the master systems, and slave systems are also 

combined by three chaotic systems. They will complete combination-combination 

synchronization in finite time by the designed controllers. As an effective approach, 

combination-combination synchronization of the high-order chaotic systems has 

potential applications to many scientific and technological fields such as secure digital 

communication. Hence, a secure communication scheme is proposed based on 

combination-combination synchronization of hyperchaotic systems. Continuous 

signals and digital signals are taken as the transmitted signals, and numerical 

simulations show that the original information can be recovered correctly in the 

receiver end. 

Due to the high sensitiveness on initial values, many proposed synchronization of 

chaos are one master chaotic system with one slaver chaotic system, such as 

references[2,3,10]. The advantages of the proposed method are as follow. Firstly, the 

master systems consist of three higher order chaotic systems, which can generate 



 

much more complicated pseudo-random sequences, and has higher security in secure 

communication. Secondly, the combination-combination synchronization is controlled 

by the generalized linear controllers and nonlinear controllers, which is a general 

method and can be applied to other chaotic systems. Finally, the 

combination-combination synchronization can be achieved in finite time, which is 

very important in real-world applications. 

 

2 The combination-combination synchronization scheme 

We consider three chaotic systems as the master systems, let , , n nA B C R ×∈  be a 

constant matrix, ( ) ( ( )) n n
n nM t m t R ×

×= ∈  a bounded time-varying matrix and 

: n nf R R→  a continuous nonlinear function such that  

( ) ( ) ( )( ),f X f Y M t X Y− = −  

and : n nR Rαδ →  is defined as: 

( , ) ( ), (0,1)X Y X Y sign X Y
ααδ α= − − ∈ , 

where , nX Y R∈  are the state vectors of master and slave systems respectively. 

Consider a master-slave synchronization scheme for two autonomous chaotic 

systems coupled by a generalized linear feedback controller as follows: 

Master systems    

1 1 1 1

2 2 2 2

3 3 3 3

( )

( )

( )

X AX f X

X BX f X

X CX f X

= +

= +

= +

&

&

&

,                                 (1) 

Slave systems     
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( ) ( )

( ) ( )

( ) ( )

Y AY f Y U t

Y BY f Y U t

Y CY f Y U t

= + +

= + +

= + +

&

&

&

,                             (2) 

Controllers       ( ) ( , ) ( ), 1,2,3i i i i iU t F X Y u t i= + = , 

where ( ) ( ) ( ),u t K X Y S X Yαδ= − + −                                    (3) 

and 1 2 3 1 2 3, , , , ,X X X Y Y Y  are the subsystems of ,X Y  respectively, and , n nK S R ×∈  

are constant feedback gain matrices to be determined. 

  Letting the error state vectors 1 2 3 1 2 3E X X X Y Y Yϕ β γ= + + − − − , we can get the 

error systems  



 

( )( ( ), ( ), ( )) ( ) ( )E G A t B t C t M t K E S Eαδ= + − −& .                (4) 

where 4 4( ( ), ( ), ( ))G A t B t C t R ×∈  is a matrix connected with subsystems linear 

matrix , ,A B C . If we can design suitable feedback gain matrices K、S  that the error 

systems with different initial values (0), (0), (0)x y z  satisfies 

1 2 3 1 2 3lim ( ) lim ( ) ( ) ( ) ( ) ( ) ( ) 0, ,
s s

s
t t t t

E t X t X t X t Y t Y t Y t t Tϕ β γ
→ →

= + + − − − → ∀ >  

where •  denotes the Euclidean norm of the vectors. 

Lemma 1 ([11]) (Gerschgorin disc theorem) Let ( ) n n
ij n nH h R ×

×= ∈  and  

1,

, 1,2,
n

i ij
j i j

r h i n
= ≠

= =∑ L . Then all eigenvalues of H  are located in the union of n  

discs as 
1

( ) { : }
n

ii i
i

G H z C z h r
=

≡ ∈ − ≤U , where C  is the set of complex numbers. 

Lemma 2 ([12]) Assume ( ) ( ( )) ( ( )) ( ( ))T
ij n nD t G M t G M t d t ×= + + + =  is bounded. 

That is, we have *
( )( ) ( ), , ( ) , 0ij ij ij t ij ii iid t d t d d d t d t= ≤ ≤ ∀ ≥ , for , 1,2,i j n= L , and 

i j≠ . Then synchronization among master-slave systems (1)-(3) can be achieved in 

finite time, if the feedback gain matrix 1 2( , , )nS diag s s s= L  is positive definite and 

the feedback gain matrix 1 2( , , )nK diag k k k= L  satisfies 

* *
11 1 12 1

* *
21 22 2 2

* *
1 2

2

2
0

2

n

n

n n nn n

d k d d

d d k d
Dk

d d d k

 −
 − = <
 
 

−  

L

L

M M O M

L

.                   (5) 

Furthermore, the corresponding settling time satisfies 

        (1 )/2max

max

2
( (0)) ln 1 ( (0))

(1 ) 2
T e V e

s
αλ

λ α
−≤ −

− −
,                   (6) 

where { }1 2(0) (0) (0), ( (0)) (0) (0), (0,1), min , , ,T
ne x y V e e e s s s sα= − = ∈ = L and 

max 0λ <  is the maximal eigenvalue of the matrix Dk  defined above. 

 

3 Implementation of combination-combination synchronization 

  Based on the definitions and Lemmas in section 2, controllers (3) are designed to 

synchronize the combination-combination chaotic systems.  



 

  The master systems consist of the chaotic Chen system[13], hyperchaotic Chen 

system and hyperchaotic Lorenz system[14,15].  

  

1 1 2 1

2 1 1 3 1 2

3 1 2 1 3

4 2 5 4 7

5 2 4 2 5 4 6

6 4 5 2 6

7 5 6 2 7

8 3 9 8 11

9 3 8 9 8 10

10 8 9 3 10

11

( )

1 7

( )

2

( )

3

x a x x

subsystem x x x x c x

x x x b x

x a x x x

x d x c x x x
subsystem

x x x b x

x x x r x

x a x x x

x c x x x x
subsystem

x x x b x

x

= −
 = − − +
 = −

= − +
 = + −
 = −
 = +

= − +
= − −
= −
=

&

&

&

&

&

&

&

&

&

&

& 9 10 3 11x x d x



















 

 
  − +

                            (7) 

where 1 1 1 2 2 2 2 2 335, 3, 28, 35, 3, 12, 7,0.0085 0.798, 10,a b c a b c d r a= = = = = = = < ≤ =  

3 3 38 / 3, 28, 1.52 0.06b c d= = − < ≤ − . Under these parameters the master systems all 

are chaotic. The hyperchaotic Chen attractors are showed in Fig. 1, and the other 

attractors can be found in the references correspondingly. 
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Fig. 1 The attractors of hyperchaotic Chen system 

Similarly, the slave systems are in the form of 



 

1 1 2 1 1

2 1 1 3 1 2 2

3 1 2 1 3 3

4 2 5 4 7 4

5 2 4 2 5 4 6 5

6 4 5 2 6 6

7 5 6 2 7 7

8 3 9 8 11 8

9 3 8 9

( )

1 7

( )

2

( )

3

y a y y U

subsystem y y y y c y U

y y y b y U

y a y y y U

y d y c y y y U
subsystem

y y y b y U

y y y r y U

y a y y y U

y c y x y
subsystem

= − +
 = − − + +
 = − +

= − + +
 = + − +
 = − +
 = + +

= − + +
= − −

&

&

&

&

&

&

&

&

& 8 10 9

10 8 9 3 10 10

11 9 10 3 11 11

y U

y y y b y U

y y y d y U














 
  +

 = − +
 = − + + 

&

&

,                        (8) 

where

1

10

11

( ) ( , ) ( ), ( ) ( ), (0,1)

U

U t F x y u t u t KE S E
U

U

αδ α

 
 
 = = + = + ∈
 
 
 

M
 are designed to 

synchronize the combination-combination chaotic systems respectively.  

  In the first, the errors are defined as  

1 1 4 8 1 1 1 4 1 8

2 2 5 9 2 2 2 5 2 9

3 3 6 10 3 3 3 6 3 10

4 1 7 11 4 1 4 7 4 11

E x x x y y y

E x x x y y y

E x x x y y y

E x x x y y y

ϕ β γ
ϕ β γ
ϕ β γ
ϕ β γ

= + + − − −
 = + + − − −
 = + + − − −
 = + + − − −

.                              (9) 

In order to prove the error equation (9) is asymptotically stable, we just need to 

synchronize the combination master systems (7) and slave systems (8). We have 

1 1

1

1

2 2

2 2

2

2

3 3

3

3

3 11 11

0 0

7 0

0 0

0 1

0 0

( ( ), ( ), ( )) 0 0 0

0 0 0 0

0 1

1 0 0

0 0 0

0 0 0 0

a a

c

b

a a

d c

G A t B t C t b

r

a a

c

b

d
×

− 
 − 
 −
 − 
 
 

= − 
 
 

− 
 −
 
 −
 
 

L L

M

M

M

M

L L

 



 

1

1
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5

8

8
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0 0 0 0

0 0
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0 0 0 0

0 0 0

M( ) 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0

x

x

x

t x

x

x

x

x
×

 
 − 
 
 
 
 −
 

=  
 
 
 
 −
 
 
 − 

L

M

M
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If we choose controllers as 

1 2 1 1 2 1 1 1 1 1 1 1 1 1

2 2 1 1 3 1 3 2 1 2 2 1 2 2 2 2 2 2

3 1 1 3 1 2 3 3 3 3 3 3 3 3 3

4 2 1 2 1 7 4 1 4 4 1 4 4 4 4 4

(( ) ( y ) ( y ))

(7( ) ( y ) ( y ) ( y ))

(( y ) ( y ) ( y ))

(( ) ( ) ( y ) ( y ))

U a y k x s x

U y y x k x s x

U x y k x s x

U a y y k x s x

α

α

α

α

ϕ ϕ ϕ δ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ δ ϕ ϕ

ϕ ϕ ϕ δ ϕ ϕ
β β β β β δ ϕ β

= − + − + −

= − + − + − + −

= − + − + −

= − + − + − + − 1

5 1 2 2 4 6 2 4 3 4 5 5 2 5 5 5 5 5 2

6 5 2 4 3 4 6 6 3 6 6 6 6 6 3

7 6 3 5 4 5 7 7 4 7 7 7 7 7 4

8 3 9 2 1 4 1 11 8 8 1 8 8 8 8

(( ) ( ) ( y ) ( y ))

( ( ) ( y ) ( y ))

( ( ) ( y ) ( y ))

( ( ) ( ) ( y ) (

U d y y x x k x s x

U y x y k x s x

U y x y k x s x

U a y y k x s x

α

α

α

α

β β β β β δ ϕ β
β β β δ ϕ β
β β β δ ϕ β

γ γ γ γ γ δ ϕ

= − + − + − + −

= − + − + −

= − + − + −

= − + − + − + − 8 1

9 3 1 2 8 10 3 8 2 8 9 9 2 9 9 9 9 9 2

10 9 2 8 3 8 10 10 3 10 10 10 10 10 3

11 10 4 9 3 9 11 11 4 11 11 11 11 11 4

y ))

( ( ) ( ) ( y ) ( y ))

( ( ) ( y ) ( y ))

( ( ) ( y ) ( y ))

U c y y x y k x s x

U y x y k x s x

U y y x k x s x

α

α

α

γ
γ γ γ γ γ δ ϕ γ
γ γ γ δ ϕ γ
γ γ γ δ ϕ γ
















= − − − + − + −


= − + − + −
 = − + − + −

 

Based on the Lemma 2, we have  

1 1 1

1 1 2

3 1

2 4 2 2

2 2 2 5

2 6 5

5 2 7

3 8 3 3

3 3 9

3 10 9

9 11 3 11 11

2 2 7 0

7 2 0

0 0 2 2

2 2 0 1

2 2 0 0

0 0 2 2

1 0 2 2

2 2 0 1

2 2 0 0

0 0 2 2

1 0 2 2

a k a

a c k

k b

a k a d

a d c k

Dk b k x

x r k

a k a c

a c k

b k x

x k d
×

− − − 
 − − 
 − −
 − − + 
 + −
 

= − − 
 −
 

− − + 
 + − −
 
 − − −
 − + 

 

And the value feedback gain of K  need to satisfy   

3 3
* *

1 11 1 1 2 22 2 1 1
2, 1 1, 21 2

1 1 1 1 1 1
( 7), ( 7)

2 2 2 2 2 2j j j j
j j j j

k d p d a k d p d c a
p p= ≠ = ≠

> + = − − > + = + −∑ ∑ , 



 

3 4
* *

3 33 3 1 4 11 1 2 2
1, 3 2, 13 1

1 1 1 1 1 1
( 2 ), ( 1)

2 2 2 2 2 2j j j j
j j j j

k d p d b k d p d a d
p p= ≠ = ≠

> + = − > + = − + +∑ ∑ , 

4 4
* *

5 22 2 2 2 2 6 33 3 2 5
1, 2 1, 32 3

1 1 1 1 1 1
(2 ), ( 2 )

2 2 2 2 2 2j j j j
j j j j

k d p d c a d k d p d b x
p p= ≠ = ≠

> + = + + > + = − +∑ ∑ , 

4 4
* *

7 44 3 5 2 8 11 1 3 3
1, 4 2, 14 1

1 1 1 1 1 1
(1 2 ), ( 1)

2 2 2 2 2 2j j j j
j j j j

k d p d x r k d p d a c
p p= ≠ = ≠

> + = + + > + = − + +∑ ∑ , 

4 4
* *

9 22 2 3 3 10 33 3 3 9
1, 2 1, 32 3

1 1 1 1 1 1
( 2), ( 2 )

2 2 2 2 2 2j j j j
j j j j

k d p d a c k d p d b x
p p= ≠ = ≠

> + = + − > + = − −∑ ∑ , 

4
*

11 44 3 9 3
1, 44

1 1 1
(1 2 )

2 2 2j j
j j

k d p d x d
p = ≠

> + = − +∑ , 

Then the master systems (7) and slave systems (8) can be synchronized in finite time, 

i.e. 

1 4 8 1 1 1 4 1 81

2 5 9 2 2 2 5 2 92

3 6 10 3 3 3 6 3 103

1 7 11 4 1 4 7 4 114

lim lim 0
s st T t T

x x x y y yE

x x x y y yE

x x x y y yE

x x x y y yE

ϕ β γ
ϕ β γ
ϕ β γ
ϕ β γ

→ →

+ + − − −  
   + + − − −   = =
   + + − − −
   + + − − −   

,  

and the synchronization time satisfies 

(1 )/2max

max

2
( (0)) ln 1 ( (0))

(1 ) 2
T e V e

s
αλ

λ α
−≤ −

− −
. 

Case 1 If we choose 

1 2 3 4 1 2 3 4

11 11
1 2 3 4

1 2

1 2
( , , , ) , ( , , , ) ,

1 2

1 2

1

2
( , , , ) , (1,1, ,1) , =0.5.

3

4

diag diag

diag S diag R

ϕ ϕ ϕ ϕ ϕ β β β β β

γ γ γ γ γ α×

   
   
   = = = =
   
   
   

 
 
 = = = ∈
 
 
 

L

  

and the variables of chaotic systems are bounded as 

 1 2 3 4 5 623 31, 32 37,0 60, 19 22, 23 24,0 38,x x x x x x− < < − < < < < − < < − < < < < ,  

7 8 9 10 11184 102, 22 25, 24 28,0 48, 166 193.x x x x x− < < − < < − < < < < − < <  

Therefore, the feedback gains can be taken as follow, 

1 1 1 2 1 1 3 1

1 1 1
max( ( 7 )) 7, max( ( 7)) 56, max( ( 2 )) 3,

2 2 2
k a c k c a k b= − − + = − = + − = = − = −  



 

4 2 2 5 2 2 2

1 1
max( ( 1)) 13.5, max( (2 )) 33,

2 2
k a d k c a d= − + + = − = + + =

6 2 5 5 2 2 2

1 1
max( ( 2 )) 9, max( (2 )) 33,

2 2
k b x k c a d= − + = = + + =  

8 3 3 9 3 3

1 1
max( ( 1)) 9, max( ( 2)) 8,

2 2
k a c k a c= − + + = = + − =  

10 3 9 11 9 3

1 1
max( ( 2 )) 10, max( (1 2 )) 13,

2 2
k b x k x d= − − = = − + =  

Based on the Lemma 2, the master systems (7) and slave systems (8) will be 

synchronized in finite time. It’s synchronized in finite time as  

(1 )/2max

max

2
( (0)) ln 1 ( (0)) 1.0

(1 ) 2
T e V e

s
αλ

λ α
−≤ − ≈

− −
. 

  The simulation result of combination-combination synchronization of chaotic 

systems is showed in figure 1.  
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Fig. 1 Errors of combination-combination synchronization of chaotic systems   

 

Remark 1 If we choose ( 1, ,11)ik i = L  large enough, the synchronizations of chaotic 

systems will be much quicker than the small one. But these values of gain coefficients 

( 1, ,11)ik i = L  can not get too large to keep the initial systems stable, i.e. it may lead 

the simulation results to overflow.   

Remark 2 In the simulations, there are so many available values of gain coefficients 



 

( 1, ,11)ik i = L to be set, because the ( 1, ,11)ik i = L  all connect with the bounded 

variables of master system that are changing by the time. So we just choose the proper 

maximal values of gain coefficients ( 1, ,11)ik i = L  that will keep the stability of 

slave systems.   

 

4 The application of secure communication 

  In this section, we apply the proposed combination-combination synchronization to 

secure communication, for example, the continuous signals of sine functions and the 

digital signals. The secure communication scheme is sketched as figure 2. In the 

transmitter side, the master systems are combined with three chaotic subsystems, 

which will produce high random sequences( )x t . Then the message ( )m t  is masked 

by the random sequences( )x t , and ˆ( )x t  is transmitted through the public channels. 

In the receiver side, the combination-combination synchronization chaotic systems 

will recover the original message ( )RS t  from the random chaotic signalsˆ( )x t .  

 

Fig. 2 Secure communication scheme of combination-combination synchronization 

 

  Here the chaotic mask method is used for secure communication, ( )S t is the 

original signal, and it’s masked by the pseudorandom sequence produced by the 

combination chaotic systems. Finally, the original signal is recovered by the 

synchronization of combined chaotic systems in the receiver side.  

  The original is given as follow 

1
( ) ( sin( ) cos( )),S t a t b t where d a b

d
= + = + , 



 

Here parameters 1, 2, 3a b d= = = . The results are showed in Fig. 3.  
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a) Original signal 
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b) Transmitted signal 
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c) Recovered signal 

Fig. 3 Process of transmitted signal and recovered signal 



 

  Then we choose the digital signal, such as square signal 

1
( ) ( ( )), max( ( ))S t square t where d square t

d
= = , 

The results are showed in Fig. 4. 
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c) Recovered signal 

 

Fig. 4 Process of transmitted signal and recovered signal 

 



 

4 Conclusions 

This paper has developed a unified method for analyzing the global finite-time 

synchronization of a large class of the high-order autonomous chaotic systems under 

the master-slave scheme. Combination-combination synchronization of chaotic 

systems has been proposed by a nonlinear feedback controller and a continuous linear 

state error feedback controller. Then a secure communication scheme of chaotic mask 

method is given based on the combination-combination synchronization of 

hyperchaotic systems. The original information signal is masked into the random 

sequences of the chaotic systems and the resulting system is still chaotic. In the 

receiver end, the information signal can also be recovered accurately. Theoretical 

analysis and numerical simulations are shown to verify the results.  
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