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ABSTRACT  7 
 8 
This article is devoted to treating of non-wave, i.e. instanton solution for the 
Maxwell-Einstein equations. Equations for the field of instanton and metric are 
derived. Metric of pseudo-Euclid space which is corresponding to transition between 
degenerate classical vacua of problem and is connected with presence at the space 
infinity divergent and convergent spherical electromagnetic waves is studied. An 
expression of the instanton is received and it’s size is found. Value of pseudo-Euclid 
action is calculated. It is shown that instanton violates so called “week energetic 
condition” which is essential for space-time singularities proving. 
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1. INTRODUCTION  14 
 15 
Gravitational instantons attract attention, starting from [1]. We recall the definition. Instantons 16 
are known as topologically nontrivial localized solution of the classical pseudo-Euclidean 17 
field equations characterized by a finite action and connecting two different vacuums of the 18 
theory [2]. Euclidean version of the theory is introduced by replacing the Minkowski metric 19 
gµν (g00 = 1, gij = - δij, i,j=1,2,3) to the Euclidean metric δµν. Formally, the transition from the 20 
description in Minkowski space to a description in pseudo-Euclidean space is performed by 21 
replacing the time coordinate x0 in Minkowski space to coordinate y0 = ix0 in pseudo-22 
Euclidean space, while introducing a pseudo-Euclidean action Λ, associating it with the 23 
action in Minkowski space S by expression Λ = iS , i = (-1)½.  24 

Instantons of classical field equations in Minkowski space describe in the semiclassical 25 
approximation quantum tunneling process between degenerate classical states located near 26 
different classical vacuums. In the theory of Maxwell-Einstein (M-E) equations. These 27 
degenerate states are states in which there is convergent (divergent) electromagnetic wave 28 
at spatial infinity, which represent the two degenerate vacuums of the theory. As was shown 29 
in [3] classical transition between these states is impossible. Indeed, if we consider the 30 
vacuum in which there is a convergent spherical electromagnetic wave (SEMW), then taking 31 
into account the curvature of space-time due to the waves almost all the rays corresponding 32 
to small portions of the wave front will capture by curvature of metric and do not give a 33 
contribution to the outgoing wave1. Therefore, the role of the instanton of the M-E equations  34 
                                                      
1 In other words, convergent wave is not focused to a point, or, in mathematical terms 
corresponding map is not homotopic to zero [4]. 



is extremely important in description of such an intuitive and "simple" phenomenon, which 35 
seems to be the process of transformation a convergent SEMW to a divergent one. Another 36 
important application of the instanton of the M-E equations is development a physical theory 37 
of electromagnetic resonators, which eliminates the unphysical singularities of fields, for 38 
example, in a spherical cavity [5]. And at last, an important application of the theory 39 
developed is cosmology, because the process of transformation of a convergent to a 40 
divergent SEMW is one of the main processes in the universe. 41 

A brief scope of the present results is published in the Internet report [6]. 42 

 43 
2. BASIC EQUATIONS 44 

  45 
As the initial equations we choose the  Einstein's gravitational equations and the equations 46 
of the electromagnetic field in vacuum (Maxwell's equations) associated with each other [7]: 47 
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Here R – trace of Ricci’s tensor Ri
k: R = Ri

i , gik – metric tensor; Tik and Fik– tensor of energy-50 
momentum and electromagnetic one; Гi

kl – Christoffel’s symbols; с – light speed in vacuum, 51 
K – gravitation constant; indices i, k, l take values 0, 1, 2, 3; repeated indices mean 52 
summation; comma means usual, i.e. non-covariant derivative[8]. Let us find a solution of (1) 53 
which corresponds to existence of spherical light wave at r → ∞. For this we use an 54 
expression for interval just as in well-known Schwarzschild problem[8]: 55 

)sin( 22222222 dθθdrdredtceds λν ⋅+−−=     (2) 56 

ν = ν(t, r, θ), λ = λ(t, r, θ); x0 =ct, t –time; x1= r, x2 = θ, x3 = φ – spherical co-ordinates. SEMW 57 

is characterized by frequency ω and kinetic moment vector J
r

. Let us choose z - axis of the 58 

co-ordinate system in direction perpendicular to J
r

. It simplifies a treating because the 59 
dependence of azimuth angle φ in (1) may be omitted.  60 

Second equation in (1) may be transformed to [8]: 61 
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where α =1, 2 correspond for the SEMW of TM - type, and α=3 – for SEMW of TE-type. 63 
Below we restrict ourselves with the case of TM - type2, for which nonzero components of 64 
vector-potential and electromagnetic tensor are only А1, А2 and: 65 
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We use the Hamilton calibration А0 = 0. For variables’ separation we assume an additional 67 
condition: λ =α(r, t)+β(θ), ν = -α(r, t)+β(θ). Substitution  (4) into (3) gives us two equations for 68 
the components А1 and А2: 69 
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If we take a derivative of the first equation in (5) on r and second – on ct, then we exclude A2 71 
from the equations. Representing F01 = Ψ(r,t)·Φ(θ), we receive equations for Ψ(r,t) and Φ(θ): 72 
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It leads from (6) that for β → 0 Φ(cosθ) = Pl(cosθ), where Pl (cosθ) – Legendre polinomial, 74 
and l is nonnegative integer[9].  75 

Energy-momentum tensor’s components Tk
i may be expressed by the components of metric 76 

tensor gk
i with the help of Einstein’s equation of gravity [8]: 77 
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where δk
i
 – unit 4-tensor, and R – is a trace of tensor Ri

k. The details of calculations one can 79 
find in [8], for example. Besides Christoffel’s symbols presented in [8], we need some 80 
additional ones; a symbol ~ (tilde) means a derivative by the angle θ : 81 
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A result looks as follows: 83 

 84 

                                                      
2 A solution for the SEMW of TE – type does not need separate treating because Maxwell-Einstein equations are 
invariant with the transformation Е → -Н, Н → Е, (so as Maxwell ones ) due to invariance of energy-momentum 
tensor Тik 
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Also express the components of energy-momentum tensor Tk
i through solution of  Maxwell's 86 

equations for F01 = Ψ(r, x0)Φ(θ), Φ(θ) = Pl (cosθ) - Legendre polynomial of order l 87 
[7]:88 
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In accordance with [7] right sides of equations (9) is averaged over the angle θ. In addition, 91 
for the wave solutions they are averaged over time [7]. For the non-wave-solutions the 92 
procedure of averaging over time has no meaning. Consider first the last three equations:  93 
for the Т0

1, Т0
2 and Т1

2. Note, that their right hand sides, except the equation for the Т0
1 are 94 

of the order of value  ~ rs
2/r2<<1, where rs

2 = K< f >2/2c4, < f >- solution’s order of value, f = 95 
r2
Ψ. Therefore, at distances of the order of the wavelength of light right hand sides of 96 



equations can be omitted3. This is consistent with the equations forТ0
2 and Т1

2 (5), 97 

if 0
~ =β .The equation for Т0

1 in (9) we will use to find α. 98 

 99 
 100 
3. TREATMENT THE EQUATIONS 101 

  102 
Subtracting the second equation in (9) from the first one and equating the result with the 103 
similar operation which is done with equations (8) we receive:  104 

[ ]
Actg

lle

r
x

er
r

e
c

K

=














 +++
Φ

+

=


















 Ψ
∂
∂+







 Ψ
∂
∂−

4

1~~
2

~~)1(

2

2
2

2

2
2

0

2
2

4

θβββ
β

αα

     (10)  105 

A is a constant. The solutions of (6), corresponding to the equation (10) one can treat in 106 
pseudo-Euclidean space which metric follows from the Minkowski space’s metric with 107 
substitution time co-ordinate x0 to “time” co-ordinate –iy0 in pseudo-Euclidean space. At the 108 
same time one can introduce pseudo-Euclead action Λ, which is connected with the action S 109 
in Minkowski space as follows Λ = iS , i = (-1)½. It is known  [2] that localized solutions of 110 
Euclidean field equations with finite Euclidean action are instantons. An instantons of 111 
classical field equations in Minkowski space describe in quasi-classical limit tunneling 112 
between degenerate classical states, which contain convergent and divergent SEMW. This 113 
procedure turns second hyperbolic equation in (6) to the elliptic one. If one suppose its 114 
finiteness at ∞→r then he receives a condition А = 0 from the  equation (10). This 115 
provides second equation (6) looks as follows: 116 
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Here prime still means a derivative on x1 = r, and point – on y0=cτ.  118 

Signs  ± hereafter correspond to different vacuums of the theory, located at τ → ± ∞. Using 119 
(11) we can rewrite the equations for instantons (8) and (9) in the form: 120 

Einstein equations: 121 

                                                      
3 See details in  [3]. 
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Point here and below means derivative y0. 123 

Maxwell equations: 124 
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Consider the equation (12). They are compatible if the condition is true: 127 
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Condition (14) allows us to rewrite equations (12) in the form:    130 
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Treating these equations is very difficult even numerically. Therefore, we are interested 132 
mainly in the asymptotic behavior of their solutions at distances r ≥ λ, λ is a wavelength of 133 
light. Note that their right sides are of the order ~ rs

2/r2<<1 and they can be omitted with the 134 
adopted accuracy. Then Einstein's equations reduce to a single equation. It solution  is 135 
consistent with the metric in a space free of matter which is well known 136 

r
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Here the value of the constant const is to be determined. Furthermore, this asymptotic 139 
equation (13) and (14) have autoscale solutions, depending on z = cτ /r. For such solutions 140 
instead of (14) we obtain the equation  141 
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Equation (17) is easily integrated and leads to the expression zαEi 2)( ±= , where Ei– 143 
integral exponent. Using the well-known series expansion [10]: 144 
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we can get the expression for the metric for large values of z: 146 
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Formula (18) describes the transition between the vacuum states with flat metric 149 
corresponding to the presence of at z → - ∞ convergent SEMW, and at z → + ∞ divergent 150 
one. This transition is localized to τ, the localization region has a size ~ r/c. Einstein's 151 
equations are also satisfied because "time" τ does not appear in them, and the equation (17) 152 
has a solution that can be represented for small z (large r) as a series expansion 153 
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4. PSEUDO-EUCLID ACTION 157 

  Let us calculate the action in curved space-time [7] 158 
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Turning to action in pseudo-Euclidean space Λ = iSf , dx0 = -icdτ, and using (11) and the 161 
normalization condition for Φ(θ) [9], we receive (if β = 0) 162 
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          (21) 164 

In (21) also is taken into account that  Aθ  can be expressed through Ar [7]. Let us treat 165 
extremes of Λ. For this we calculate the variation Λ on Ar provided condition δAr = 0 on the 166 
boundaries of integration and equate it to zero. As a result, we obtain: 167 
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Because of the arbitrariness δAr integrand in (22) is equal zero, which gives the equation of 170 
the instanton: 171 
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 It reduces to the equation: 174 
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The solution of this equation has the form: 177 
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Z1- cylindrical function. Below, however, we will use another solution of equation (24), since 180 
the solution Y(z) does not have finite action. Calculating the pseudo-action for the instanton 181 

),( τrAI
r , we receive 182 
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Action must be calculated for a classical trajectory which begin and end (τ →± ∞) lie in the 185 
region where the space-time is not curved, i.e. at ∞→r , where the field of SEMW tends to 186 
zero. Among the set of solutions of equation (23) satisfying this condition, we choose the 187 
solution:  188 
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where E - is a constant with the dimension of the electrical field. Its value is related to the so-190 
called topological charge of the instanton  191 
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In evaluating the integral in (28) we use the expression (27)4. An important feature of the 193 
solution (27) is that it field decreases at r → 0, which is consistent with the tunneling nature 194 
of the instanton. 195 

In calculating the pseudo-Euclidean action for the solution (27) to avoid divergence of the 196 
integral in (26) we cut off the integral over dr in the upper limit at the distance r0, having a 197 
sense of the size of the instanton, which will be defined below. With this in mind, the result of 198 
calculations (26) looks as follows:  199 
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Recall that the action )( I
rAΛ  determines the probability w of transition of convergent SEMW 201 

to divergent one: ( ) h/)(exp~ I
rAw Λ , ћ=h/2π, h – is the Plank constant [2]. 202 

The value r0   we will find from the condition of matching metrics inside and outside 203 
the instanton. In the outer region metric is given by [3].  204 
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Metric in the inner region is found from formula (11), where we substitute the solution (27), 206 
given that f = ir2/c∂Ar/∂τ 207 
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Given that rs << rc and living in equation eαin =  eαout most significant members we get (up to 209 
terms ~ [l(l+1)]-1) 210 
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Let us calculate the amount of 00
4

00 8
T

c

K
R

π= , using (8) for the metric (31) where T00 = W – 212 

field energy density of the instanton.  213 

                                                      
4 Typically, the integral in (28) is normalized to the right side of the equation that leads to values of Q = 1 (iinstanton) 
and Q = -1 (anti-instanton) [11]. 
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 215 

The result of calculation is shown in Fig. 1  216 

  217 

Fig. 1. Field energy density of the instanton W(x);  Wc  = 2

4

8 cKr

c

π
, х = r/rc, l = 3. Qualitative 218 

behavior of W (x) is stood the same for any l. 219 

The calculation shows that near the boundary of the instanton and waves, i.e. for x ≈ x0 (r ≈ 220 
r0) energy density is negative. The calculation shows also that the magnitude R00 < 0 in a 221 
sufficiently large vicinity of x = x0 for all l. The latter circumstance is essentially for the proof 222 
of the presence (or rather lack of it) of singularities, which, as is known, is based on the fact 223 
Rαβ ξ

α ξβ > 0, where ξ – is any  non space-like 4 – vector5 [12]. Absence of singularities 224 
associated with horizons of the metric (30), can be seen both from the expression (31 and 225 
from Fig. 1. The only fatal singularity is a singularity at x = 0, where W(x) ~ x-4. 226 

 227 
 228 
5.   PROBLEM OF INSTANTONS FROM ENERGETIC POINT OF VIEW 229 
 230 
 231 
During the propagation of SEMW part of its energy converts into other energy forms, such as 232 
energy of the gravitational waves. This issue was outside the scope of the work [see 3, 5, 7]. 233 

In the literature there are different points of view on the question on interaction of EMW and 234 
gravitational waves. In [13] argues that the processes of transformation of the two photons in 235 
the graviton (and back) are prohibited by the conservation laws. At the same time, Wheeler 236 
did not rule out such a possibility [14]. In [15], these processes are considered without any 237 
discussion. These differences can be overcome, if we consider the photon-graviton 238 
processes in the presence of a static gravitational field created by SEMW, which removes 239 

                                                      
5 For proving of Rαβ ξ

α ξβ < 0 one can take, for example,  ξ (1, 0, 0, 0). 

   W/Wc 



the restrictions imposed by the conservation laws6. Leaving this issue for further discussion, 240 
make the following remark. Consider the first relation from (11)   241 
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for instantons, and a similar relation for waves 243 
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binding metrics and fields of instanton  or electromagnetic waves. For definiteness we take 245 
in (33) and (33a) "+" sign. Using Maxwell's equations in curved space-time [8] one can write 246 
them in the form, respectively 247 
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HE
rr

, - electric and magnetic fields of the instanton or SEMW. The magnitude of the 249 
integrand is proportional to the conductivity (the role of the current density plays 250 
displacement current density), the value for which is real for wave and imaginary for 251 
instanton. The first means that the energy irreversibly transfers from SEMW to some other 252 
form, which is most likely connected with gravitational waves. The second indicates the 253 
reversible transfer of energy from the electromagnetic wave to the instanton, with 254 
subsequent return to the SEMW.  255 

 A question of interest is that, at what stage of the study was the neglect of gravitational 256 
waves, and what role they play in the problem. If we argue by analogy with the problem of 257 
the gravitational collapse of a non-spherical body, it can be assumed that the emission of 258 
gravitational waves will accompany the propagation of a spherical electromagnetic wave with 259 
a nonzero l, that, in the end of ends allow to speak about a spherically symmetric metric for l 260 
≠ 0. Thus, used in this work, as well as in [3, 5, 7], averaging tensor Ti

k (9) on the angle θ as 261 
a consequence led to the fact that gravitational waves have been left out of consideration. 262 

6.   DISCUSSION 263 

This article is devoted to treating the role of instantons in considering the dynamics of 264 
spherical electromagnetic waves by means of Maxwell-Einstein equations. Due to instantons 265 
convergent wave can be transformed into a divergent one what allow transmission of  266 
information from the past to the future.  This article discusses the two different solutions of it 267 
– an auto-scaled one depending on  z = cτ / r (25) which does not have a finite Euclidean 268 
action, and the solution (27) with the finite action Λ(Ar

I) (29). Feature of the first solution is 269 
that in a world where it could be realized, the past is separated from the future with an 270 

                                                      
6 Like that the diagrams with three free ends become possible in quantum electrodynamics [16] 



infinite barrier, i.e. there is no flow of time in this world. The second solution is more 271 
consistent with the state of affairs in the real world - past goes to the future with some finite 272 
probability. 273 

The result obtained above, consisting in violation by instantons of the so-called "weak 274 
energy condition"  Tαβ ξ

α ξβ > 0, where ξ – is any non space-like 4 – vector is important in 275 
research of the space-time singularities [13]. 276 

Note that most of the work on gravitational instantons available on the resource [17], are 277 
devoted to the classification of instanton solutions of Maxwell-Einstein in multidimensional 278 
Riemannian manifolds and their applications to the physics of black holes. 279 
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