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Abstract 

The main concern of present study is to investigate the MHD stagnation flow past a porous rotating disk in 

the presence of the velocity slip condition. The boundary-layer governing partial differential equations 

(PDEs) are transformed into highly nonlinear coupled ordinary differential equations (ODEs) consist of the 

momentum and energy equations using similarity solution. The velocity profiles in radial, tangential and 

axial directions and temperature distribution are obtained via a semi analytical/numerical method, called 

Homotopy Analysis Method (HAM). An excellent agreement is observed between some of the obtained 

results of the current study and those of previously published studies. The influences of physical flow 

parameters such as magnetic interaction parameter ( )M , slip factor ( )γ , rotation strength parameter ( )ω , 

and suction parameter ( )sW  on the all fluid velocity components, temperature distribution as well as the skin 

friction coefficients and the rate of heat transfer are examined and analyzed. This simulation presents the 

feasibility of using magnetic rotating disk drives in novel nuclear space propulsion engines. 
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Nomenclature 

constant parameter a   

external uniform magnetic field  B  

constant magnetic flux density  0B  

specific heat at constant pressure  pc  

self-similar radial velocity F  

self-similar tangential velocity G  

self-similar axial velocity H  

thermal conductivity  k  

pressure  p  

self-similar pressure P   

stagnation pressure 0p  

radial direction in cylindrical polar coordinates r  

fluid temperature  T  

velocity component in the radial direction  u  

external flow velocity eu  

velocity component in the tangential direction  v  

velocity component in the axial direction  w  

uniform suction 0w  

normal direction in cylindrical polar coordinates z  

Dimensionless parameters 

magnetic interaction parameter ( )2
0B aσ ρ  M  

Prandtl number ( )pc kµ  Pr  
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suction parameter ( )0w aν   sW   

rotation strength parameter ( )aΩ  ω  

slip factor ( )( )2 v vaσ ξ ν σ −   γ  

Greek symbols 

a scaled boundary-layer coordinate η  

mean free path ξ  

self-similar temperature θ   

dynamic viscosity  µ  

kinematic viscosity  ν  

density  ρ  

electrical conductivity  σ  

tangential momentum accommodation coefficient vσ  

tangential direction in cylindrical polar coordinates φ  

angular velocity of the disk  Ω  

Subscripts 

condition of the wall w   

condition of the free steam ∞   

 

1. Introduction 

One of the most important fluid mechanics classic problems that attracted many attentions in several 

industrial and engineering processes such as rotating machinery, lubrication, oceanography and computer 

storage devices is the problem of flow over a rotating disk. Von Karman [1] was the first one who studied the 

hydrodynamic flow over an infinite rotating disk. In this study, he introduced his famous appropriate 

transformations, giving rise to ordinary differential equations that are a reduced form of the governing partial 
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differential equations. The exact solution results for the heat transfer problem of a rotating disk with fluid 

flow around it were demonstrated by Shevchuk and Buschmann [2]. Attia [3] presented the laminar steady 

flow of an incompressible viscous fluid past a rotating disk with an infinite expansion in the porous medium. 

Osalusi et al [4] demonstrated the effects of ohmic heating, viscous dissipation, and Hall effect in an MHD 

flow over the porous rotating disk considering variable fluid properties such as density, viscosity, and 

thermal conductivity. Beside the theoretical investigations, significant researches have been executed in the 

field of experimental studies of rotating disk systems [5]. In another study, Asghar et al [6] discussed steady 

3D flow and heat transfer of viscous fluid on a rotating disk stretching in radial direction. Their results 

showed that the exact analytical solutions were existed for the case of pure stretching. 

No-slip boundary conditions (the assumption that a liquid adheres to a solid boundary) is applied in most 

of the studies. In some investigations like emulsions, suspensions, foams and polymer solution [7], the no-

slip conditions are not adequate. For the slip flow regimes, the standard Navier–Stokes and energy equations 

can be still applied by taking into account the velocity slip conditions. The slip-flow regimes have been 

widely studied and the researchers have been concentrating on the analysis of micro-scale in micro-electro-

mechanical systems (MEMS) associated with the embodiment of velocity slip condition. Sparrow et al [8] 

assumed the fluid flow due to the rotation of a porous surface disk and employed a set of linear slip flow 

conditions. As a result of slip condition, a substantial reduction in torque occurred. Sahoo [9] investigated the 

effect of partial slip, viscous dissipation, and Joule heating on the flow and heat transfer of an electrically 

conducting non-Newtonian fluid over to a rotating disk. Turkyilmazoglu and Senel [10] showed the effect of 

roughness on the heat and mass transfer for the flow past a rotating disk subjected to a wall suction or 

injection. 

Understanding MHD is strongly related to the comprehension of physical effects which take place in 

MHD. When a conductor moves into a magnetic field, electric current is induced in the conductor and creates 

its own magnetic field (Lenz’s law). Since the induced magnetic field tends to eliminate the original and 

external supported field, the magnetic field lines will be excluded from the conductor. Conversely, when the 

magnetic field influences the conductor to move it out of the field, the induced field amplifies the applied 
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field. The net result of this process is that the lines of force appear to be dragged accompanied by the 

conductor. In this paper the conductor is the fluid with complex motions. To understand the second key effect 

which is dynamical we should know that when currents are induced by a motion of a conducting fluid 

through a magnetic field, a Lorentz force acts on the fluid and modifies its motion. In MHD, the motion 

modifies the field and vice versa. This makes the theory highly non-linear [11, 12]. 

HAM is known as one of the most reliable techniques to solve nonlinear problems. HAM was employed 

by Liao, who was the first, to offer a general analytical method for nonlinear problems [13, 14]. Considering 

the effects of Brownian motion and thermophoresis, Mustafa et al [15] studied stagnation point flow of a 

nano-fluid towards a stretching sheet using HAM. Rashidi et al [16] perused partial slip, thermal-diffusion 

and diffusion-thermo on MHD flow over a rotating disk with viscous dissipation and Ohmic heating. The 

mixed convection of an incompressible Maxwell fluid flow over a vertical stretching surface was studied by 

Abbas et al [17] via HAM, considering both cases of assisting and opposing flows. Thermal radiation effect 

on an exponential stretching surface was perused by Sajid and Hayat [18] via HAM. Rashidi et al [19] 

demonstrated the parametric analysis and optimization of entropy generation in unsteady MHD flow past a 

stretching rotating disk using artificial neural network (ANN), particle swarm optimization (PSO) algorithm 

and HAM. Dinarvand et al [20] employed HAM to investigate the unsteady laminar (MHD) flow near the 

forward stagnation point of a rotating and translating sphere. Abbasbandy et al. [21] employed HAM for 

nonlinear boundary value problems. Nowadays HAM has been employed by researchers for different 

nonlinear problems. Rashidi et al. [22] investigated the flow of a viscous incompressible fluid between two 

parallel plates due to the normal motion of the plates using HAM. In another study, Rashidi et al [23] 

presented the homotopy simulation for nano-fluid dynamics from a non-linearly stretching isothermal 

permeable sheet with transpiration. 

The current perusal is mainly motivated by the need to study the MHD stagnation flow over a porous 

rotating disk in the presence of the velocity slip condition. HAM, an analytical method, is employed to 

investigate the effects of physical flow parameters such as magnetic interaction parameter, slip factor, 

rotation strength parameter, and suction parameter on the fluid velocity in all directions and temperature 
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distribution. 

 

2. Governing equations and mathematical formulation 

We consider the 3D steady MHD laminar incompressible flow of electrically conducting viscous fluid 

over a porous rotating disk in the presence of an externally applied uniform vertical magnetic field in the 

neighborhood of a stagnation point of a body of revolution. The axisymmetric governing equations for the 

continuity, momentum and energy in laminar MHD incompressible boundary-layer flow in cylindrical 

coordinates can be presented, respectively, as follows [24]: 
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where ρ  is the fluid density, p  is the fluid pressure, ν  is the kinematic viscosity, σ  is the electrical 

conductivity, eu  is the velocity of the external flow, k  is the thermal conductivity and pc  is the specific heat 

at constant pressure. The coordinate system used in this problem is non-rotating cylindrical polar 

coordinates( ),  ,  r zφ . Let the disk rotate with a constant angular velocity ( )Ω  and be placed at 0z = . The 

flow velocity components ( ), ,u v w  are in the directions of increasing cylindrical polar coordinates, 

respectively. The coordinate system and geometry of the problem are shown in figure 1. An external uniform 

magnetic field B is applied normal to the surface of the disk, which has a constant magnetic flux density B0 
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that is assumed constant by taking small magnetic Reynolds number much smaller than the fluid Reynolds 

number. The surface of the rotating disk is maintained at a uniform temperature wT , while the temperature 

and pressure of the ambient fluid are T∞ and p∞ , respectively. Considering the effect of velocity slip is very 

important and should be included in the modeling of flow field for the more accurate prediction. In the base 

of slip flow theory, one can declare that the fluid velocity at the surface is different from the wall velocity 

compared to the local velocity gradient in normal direction. 

The appropriate boundary conditions subject to uniform suction 0w  through the disk and slip condition 

are introduced as: 

0

2 2
, , , , at 0,v v

w
v v

u v
u v r w w T T z

z z

σ σξ ξ
σ σ
− −∂ ∂= = Ω + = = =

∂ ∂
  

, , , as ,e eu u v v T T z∞→ → → → ∞   

(6) 

where vσ  is the tangential momentum accommodation coefficient, which is usually determined empirically 

[25] and depends on fluid and surface finish, ξ  is the mean free path. It is found that in the potential flow 

regime: 

( )2 2 2
0

1
, 0, 2 , 4 ,

2e e eu a r v w a z p a r z pρ= = = − = − + +  (7) 

where a  is a constant and 0p  is the stagnation pressure. Hereupon, the stagnation point occurs at the origin. 

The non-dimensional forms of mean flow velocities and temperature distributions of Eqns. (1)-(5) are given 

by Von Karman’s exact self-similar solution of the Navier-Stokes equations: 

( ) ( ) ( )

( )( ) ( ) ( ) ( )2 2

, , , ,

1
, ,

2 w

a
z u a r F v a r G w a H

p a r P T T T T

η η η ν η
ν

ρ η θ η ∞ ∞

= = = =

= − + = − −
 (8) 

where F , G , H  and θ  are the non-dimensional functions of modified dimensionless vertical coordinate η . 

Substituting the above similarity transformations into Eqns. (1)-(5), the nonlinear ordinary differential 

equations are obtained 
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( ) ( )2 0,H Fη η′ + =  (9) 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )1 1F H F F G M Fη η η η η η2 2′′ ′− − + − − + = 0,  (10) 

( ) ( ) ( ) ( ) ( ) ( )G H G F G MGη η η η η η′′ ′− −2 − = 0,  (11) 

( ) ( ) ( )1
,H

Pr
θ η η θ η′′ ′− = 0  (12) 

where 2
0M B aσ ρ=  is the magnetic interaction parameter, pPr c kµ=  is the Prandtl number and primes 

denote differentiation with respect to η . The transformed boundary conditions become 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
0 0 , 0 0 , 0 , 0 1,

1, 0, 0, as ,

sF F G G H W

F G

γ ω γ θ
η η θ η η

′ ′= = + = =

→ → → → ∞
 (13) 

where ( )2 v vaγ σ ξ ν σ = −   is the slip factor, aω = Ω  shows a rotation strength parameter, 

( )1 2

0sW w aν=  is the suction/injection parameter and 0sW <  corresponds to a uniform suction at the disk 

surface. 

 

3. HAM solution 

We choose the appropriate initial approximations, to satisfy the above boundary conditions, as follows: 
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( )0 1 ,
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e
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The linear operators ( )HHL , ( )FFL , ( )GGL , and ( )θθL  are introduced as: 

( ) ,H

H
H

η
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with the following properties: 
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where 7ic i, = 1 −  are the arbitrary constants. According to Eqns. (9)-(12), the nonlinear operators are 

defined as 
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The auxiliary functions become: 

( ) ( ) ( ) ( )1, ,H F GH H H H e η
θη η η η −= = = =   (30) 

The symbolic software MATHEMATICA is employed to solve the thm  order deformation equations (31)-
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(34). 
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and 

{0, 1,
χ

1, >1,m
m
m

≤=  (39) 

are the involved parameters in HAM theory. See Ref [13, 26, 27], for more information about the different 

steps of HAM. It is important to choose a proper value of auxiliary parameter to control and speed the 

convergence of the approximation series by the help of the so-called −h curve. Obviously, the valid regions 

of h  correspond to the line segments nearly parallel to the horizontal axis. The −h curves of ( )0F ′ , ( )0G ′ , 

( )0H ′′′ , and ( )0θ ′  obtained by the 20th order of HAM solution are shown in Fig. 2. a. 

In order to acquire the optimal values of auxiliary parameters, the averaged residual errors are defined as: 
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The residual errors for 20th order of HAM solutions of Eq. (41) are illustrated in Fig. 2. b, to survey the 

accuracy of the present method. 

 

4. Results and Discussion 

The nonlinear ordinary differential equations (9)-(12) subject to the boundary conditions (13) have been 

solved via HAM for some values of the magnetic interaction parameter ( )M , slip factor ( )γ , rotation 

strength parameter ( )ω , and suction parameter ( )sW . For the present investigation, the value of the Prandtl 

number ( )Pr  is considered equal to 0.71. The values of the flow physical parameters are mentioned in each 

of the graphs and tables. Table 1 illustrates a comparison between the presented results and those reported by 

Turkyilmazoglu [24] for ( )0F ′  and ( )0G ′  and different value of the magnetic interaction parameter. An 

excellent agreement can be observed between them. Tables 2-4 depict numerical values of the skin friction 

coefficients and rate of heat transfer for different values of the suction parameter and slip factor. 

Figure 3 represents the influence of magnetic interaction parameter on the radial, tangential and axial 

velocity components as well as temperature distribution. A drag-like Lorentz force is created by the infliction 

of the vertical magnetic field on the electrically conducting fluid. This drag-like force has tendency to slow 

down the flow around the disk. Therefore, all velocity boundary layer thicknesses decrease, as the magnetic 

field gets stronger. It is worth mentioning that the large resistances on the fluid particles apply as the vertical 
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magnetic field increases. 

The effect of slip parameter on the velocity components and temperature distribution is demonstrated in 

figure 4. In the presence of the slip condition, the radial velocity boundary layer thickness reduces. In 

addition, the radial velocity profile starts from zero only in the no slip condition cases. The fluid velocity 

boundary layer thicknesses in radial, tangential and axial directions decrease with increasing the values of the 

slip factor. In other word, the less amount of flow is drawn and pushed away in the velocity directions, as the 

slip gets stronger. It is also observed that the value of the temperature component reduces as the slip 

parameter increases. 

Figure 5 illustrates the effect of rotation strength parameter on the radial, tangential and axial velocity 

components and the thermal boundary-layer thickness. As the rotation strength parameter increases, the 

velocity profiles in tangential direction increases and the radial velocity boundary layer thickness, the axial 

velocity component and thermal boundary-layer thickness reduce. It is worth mentioning that as the rotation 

parameter increases the centrifugal force pokes the fluid particles in the radial direction. The enhancement in 

the rotation strength parameters leads to reduce the axial velocity component, whose decrease is due to the 

reason that increasing rotation augments the pumping of fluid particles in the radial direction. 

Figure 6 shows the effect of suction parameter on all velocity components and the temperature 

distribution. Applying suction at the disk surface causes to reduce all the fluid velocity profiles. This 

phenomenon happens because of this fact that applying suction leads to draw the amount of fluid particles 

into the wall and consequently the velocity boundary-layers decrease. In addition, the usual decay of 

temperature distribution occurs for larger values of the suction parameter. 

Figures 7-a&b present the velocity contours in radial and axial directions. As the radial coordinate 

increases, the primitive radial ( )u  velocity component increases. This velocity component is maximized near 

the surface of the disk i.e. at low values of axial coordinate (bottom right hand corner of Figure 7-a). From 

Figure 7-b, it is obvious that the axial velocity component is maximized near the disk surface for all values of 

radial coordinate. As we depart from the surface, the axial velocity component decays. In order to have a 
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better grasp of the fluid flow, the velocity vectors are shown in figure 7-c. Fluid is clearly drawn in a fan like 

mechanism outwards along the radial coordinate and in the negative axial direction. This template 

characterizes the Von Karman swirling flow [1]. 

 

5. Conclusions 

In the current study, a mathematical formulation has been derived for an MHD stagnation flow due to a 

porous rotating disk in the presence of the velocity slip. HAM is used to solve the system of ordinary 

differential equations. The present semi numerical/analytical simulations agree closely with the previous 

studies for some especial cases. HAM has been shown to be a very strong and efficient technique in finding 

analytical solutions for nonlinear differential equations. The effects of the five key thermo-physical 

parameters governing the flow i.e. magnetic interaction parameter, slip factor, rotation strength parameter, 

and suction parameter on the all dimensionless velocity components and temperature distributions as well as 

skin friction coefficient and local Nusselt number have been presented graphically and interpreted in details. 

These computations have provided some further insights into the fluid mechanics and thermodynamics of 

proposed rotating disk MHD systems coupled with nuclear space propulsion engines. 
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Figure 1: Schematic of the flow configuration and geometrical coordinates. 
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Figure 2: a) The −h curves of ( )0H ′′′ , ( )0F ′ , ( )0G ′  and ( )0θ ′  and b) The residual error of Eq. (41) 

obtained by the 20th order approximation of the HAM solution when 1sM Wω= = − =  and 0.1γ = . 
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Figure 3: Effect of magnetic interaction parameter on a) axial b) radial c) tangential velocity components 

and d) temperature distribution when 1ω = , 1sW = −  and 0.1γ = . 

 



18 
 

a) 

η

H
 (η

)

0 0.5 1 1.5 2 2.5 3
-7

-6

-5

-4

-3

-2

-1

γ = 0.0
γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.5
γ = 1.0

 

b) 

η
F

 (η
)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

γ = 0.0
γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.5
γ = 1.0

 

c) 

η

G
 (η

)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

γ = 0.0
γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.5
γ = 1.0

 

d) 

η

θ 
(η

)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

γ = 0.0
γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.5
γ = 1.0

 

Figure 4: Effect of slip parameter on a) axial b) radial c) tangential velocity components and d) 

temperature distribution when 1M ω= =  and 1sW = − . 
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Figure 5: Effect of rotation strength parameter on a) axial b) radial c) tangential velocity components and 

d) temperature distribution when 1,M =  1sW = −   and 0.1γ = . 
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Figure 6: Effect of suction parameter on a) axial b) radial c) tangential velocity components and d) 

temperature distribution when 1M ω= =  and 0.1γ = . 
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Figure 7: a) Radial velocity contour b) Axial velocity contour and c) Vector analysis with the vector 

variables of u  and w when 1sM W aω= = − = = , 0.1γ =  and ( )5 21.5 10 m sν −= × . 
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Tables 

Table 1: 

Comparison between the results of present study with the results reported by Turkyilmazoglu [24] for ( )0F ′  

and ( )0G ′−  and different values of the magnetic interaction parameter when 2ω =  and 0sW γ= = . 

M  
( )0F ′   ( )0G ′−  

Present Ref. [23] Present Ref. [23] 

0 2.295642283711 2.2956422869 2.393661963184 2.3936619498 

1 2.453325131091 2.4533251351 3.041585272826 3.0415852559 

2 2.620862841949 2.6208628461 3.601362344177 3.6013623342 

5 3.106851835286 3.1068518380 4.956835245622 4.9568352387 

 

Table 2: 

Numerical values of the radial skin friction coefficient ( )( )0F ′  for different values of the suction parameter 

( )sW  and slip factor ( )γ  when 1M ω= = . 

sW  0γ =  0.5γ =  1γ =  

0 1.85378891 0.98591725 0.66338194 

−1 2.45041073 1.12259375 0.72122532 

−2 3.15845036 1.24170373 0.76749355 

−3 3.94772094 1.34041906 0.80340936 
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Table 3: 

Numerical values of the tangential skin friction coefficient ( )( )0G ′−  for different values of the suction 

parameter ( )sW  and slip factor ( )γ  when 1M ω= = . 

sW  0γ =  0.5γ =  1γ =  

0 1.47013629 0.93615979 0.64949106 

−1 2.12505924 1.09603405 0.71466016 

−2 2.88698318 1.22751493 0.76430872 

−3 3.72025303 1.33258491 0.80178116 

 

Table 4: 

Numerical values of the heat transfer rate ( )( )0θ ′−  for different values of the suction parameter ( )sW  and 

slip factor ( )γ  when 1M ω= = . 

sW  0γ =  0.5γ =  1γ =  

0 0.70526567 0.83129079 0.87249549 

−1 1.21486195 1.34816468 1.38390410 

−2 1.80074808 1.92938227 1.95818403 

−3 2.43044518 2.54972643 2.57242006 

 


