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Abstract

The main concern of present study is to investigfageMHD stagnation flow past a porous rotatingdis
the presence of the velocity slip condition. Theurmary-layer governing partial differential equaso
(PDEs) are transformed into highly nonlinear codpdedinary differential equations (ODES) consistiu
momentum and energy equations using similarity tsmiu The velocity profiles in radial, tangentiahda
axial directions and temperature distribution abtamed via a semi analytical/numerical method|edal
Homotopy Analysis Method (HAM). An excellent agremmh is observed between some of the obtained

results of the current study and those of previoymiblished studies. The influences of physicaivflo

parameters such as magnetic interaction paran@M@r, slip factor( y), rotation strength paramet(aw),

and suction parametMs) on the all fluid velocity components, temperatdigribution as well as the skin

friction coefficients and the rate of heat transhee examined and analyzed. This simulation prestat

feasibility of using magnetic rotating disk driviesnovel nuclear space propulsion engines.
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Nomenclature

a

Wy

z

constant parameter

external uniform magnetic fiel

constant magnetic flux density

specific heat at constant pressure
self-similar radial velocity
self-similar tangential veloci
self-similar axial velocit

thermal conductivity

pressure

self-similar pressure

stagnation pressure

radial direction in cylindrical polar coordina

fluid temperature

velocity component in the radial direction

external flow velocity

velocity component in the tangential direction

velocity component in the axial directi

uniform suction

normal direction in cylindrical polar coordinates

Dimensionless parameters

M

magnetic interaction paramet@]fBo2 / pa)

Prandtl numbef uc, /k )



W, suction paramete(lwo/\/v_a)

w rotation strength parametf®/a)

y slip factor([(Z—Jv)f\/%]/av)

Greek symbols

n a scaled boundary-layer coordinate

$ mean free path

7 self-similar temperatui

M dynamic viscosity

v kinematic viscosity

P density

o electrical conductivit

g, tangential momentum accommodation coefficient
7 tangential direction in cylindrical polar coordieat
Q angular velocity of the disk

Subscripts

w condition of the wa

00 condition of the free stee

1. Introduction

One of the most important fluid mechanics classubfems that attracted many attentions in several
industrial and engineering processes such as mgtatiachinery, lubrication, oceanography and compute
storage devices is the problem of flow over a nogatlisk. Von Karman [1] was the first one who $tabthe
hydrodynamic flow over an infinite rotating diskn Ithis study, he introduced his famous appropriate

transformations, giving rise to ordinary differettequations that are a reduced form of the gomgrpartial
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differential equations. The exact solution resfitsthe heat transfer problem of a rotating diskhwiuid
flow around it were demonstrated by Shevchuk angcBmann [2]. Attia [3] presented the laminar steady
flow of an incompressible viscous fluid past a tioig disk with an infinite expansion in the porausdium.
Osalusiet al [4] demonstrated the effects of ohmic heatingcatiss dissipation, and Hall effect in an MHD
flow over the porous rotating disk considering abte fluid properties such as density, viscosityd a
thermal conductivity. Beside the theoretical inigegions, significant researches have been execotdte
field of experimental studies of rotating disk gyss [5].In another study, Asghat al [6] discussed steady
3D flow and heat transfer of viscous fluid on aatotg disk stretching in radial direction. Theisués
showed that the exact analytical solutions werstedifor the case of pure stretching.

No-slip boundary conditions (the assumption thhtjaid adheres to a solid boundary) is applied stn
of the studies. In some investigations like emulsjcsuspensions, foams and polymer solution [€],nkb-
slip conditions are not adequate. For the slip ftegimes, the standard Navier—Stokes and energtiegs
can be still applied by taking into account theoedl slip conditions. The slip-flow regimes haveen
widely studied and the researchers have been ctatiag on the analysis of micro-scale in microetie-
mechanical systems (MEMS) associated with the ettt of velocity slip condition. Sparroet al [8]
assumed the fluid flow due to the rotation of aqusr surface disk and employed a set of linearfklip
conditions. As a result of slip condition, a subgitd reduction in torque occurred. Sahoo [9] irigeged the
effect of partial slip, viscous dissipation, andil@doheating on the flow and heat transfer of actatally
conducting non-Newtonian fluid over to a rotatingkd Turkyilmazoglu and Senel [10] showed the dffafc
roughness on the heat and mass transfer for the ghkst a rotating disk subjected to a wall sucton
injection.

Understanding MHD is strongly related to the corhpresion of physical effects which take place in
MHD. When a conductor moves into a magnetic fieldctric current is induced in the conductor arehtas
its own magnetic field (Lenz’s law). Since the iodd magnetic field tends to eliminate the origiaat
external supported field, the magnetic field linel be excluded from the conductor. Conversely gwtihe

magnetic field influences the conductor to moveut of the field, the induced field amplifies thepéied
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field. The net result of this process is that timed of force appear to be dragged accompaniechéy t
conductor. In this paper the conductor is the fluith complex motions. To understand the seconddffct
which is dynamical we should know that when cuiseate induced by a motion of a conducting fluid
through a magnetic field, a Lorentz force acts lom fiuid and modifies its motion. In MHD, the matio
modifies the field and vice versa. This makes tieoty highly non-linear [11, 12].

HAM is known as one of the most reliable technigteesolve nonlinear problems. HAM was employed
by Liao, who was the first, to offer a general gtiahl method for nonlinear problems [13, 14]. Gdesing
the effects of Brownian motion and thermophoreMlsstafaet al [15] studied stagnation point flow of a
nano-fluid towards a stretching sheet using HAMsIRdi et al [16] perused partial slip, thermal-diffusion
and diffusion-thermo on MHD flow over a rotatingskliwith viscous dissipation and Ohmic heating. The
mixed convection of an incompressible Maxwell fldliolw over a vertical stretching surface was stddig
Abbaset al [17] via HAM, considering both cases of assistimgl @pposing flows. Thermal radiation effect
on an exponential stretching surface was peruse8&ajyl and Hayat [18] via HAM. Rashidt al [19]
demonstrated the parametric analysis and optimizaif entropy generation in unsteady MHD flow past
stretching rotating disk using artificial neuratwerk (ANN), particle swarm optimization (PSO) atgbm
and HAM. Dinarvancet al [20] employed HAM to investigate the unsteady laaniMHD) flow near the
forward stagnation point of a rotating and transtatsphere. Abbasbandy al. [21] employed HAM for
nonlinear boundary value problems. Nowadays HAM baen employed by researchers for different
nonlinear problems. Rashiei al. [22] investigated the flow of a viscous incompikkesfluid between two
parallel plates due to the normal motion of thetgdausing HAM. In another study, Rashiial [23]
presented the homotopy simulation for nano-fluichatyics from a non-linearly stretching isothermal
permeable sheet with transpiration.

The current perusal is mainly motivated by the needtudy the MHD stagnation flow over a porous
rotating disk in the presence of the velocity siipndition. HAM, an analytical method, is employed t
investigate the effects of physical flow parametsugh as magnetic interaction parameter, slip facto

rotation strength parameter, and suction paranwiethe fluid velocity in all directions and tempiena
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distribution.

2. Governing equations and mathematical formulation

We consider the 3D steady MHD laminar incompressitdw of electrically conducting viscous fluid
over a porous rotating disk in the presence of xereally applied uniform vertical magnetic field the
neighborhood of a stagnation point of a body obhetion. The axisymmetric governing equations foe t
continuity, momentum and energy in laminar MHD ingwessible boundary-layer flow in cylindrical

coordinates can be presented, respectively, as\sl]24]:
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u.-u),
o ror 0z? r? € ) 2)

v, 3

4)

ow ow _ 1dp 0w  low  ow
+W -—T 4y o,
or 0z 0 0z or? r or 0z?

oT  dT _ k (a*r 10T azrj
+= + , (5)

U— W — = — | —— + =+ ——
or 0z pc,\or? ror 0z?

where p is the fluid density,p is the fluid pressurey is the kinematic viscosityg is the electrical
conductivity, u, is the velocity of the external flov, is the thermal conductivity ang}, is the specific heat
at constant pressure. The coordinate system usethisn problem is non-rotating cylindrical polar

coordinate§r, ¢, z). Let the disk rotate with a constant angular vigo¢Q) and be placed at = 0. The

flow velocity components(u,v,W) are in the directions of increasing cylindricallgrocoordinates,

respectively. The coordinate system and geomettlieoproblem are shown in figure 1. An externafamn

magnetic fieldB is applied normal to the surface of the disk, Whi@as a constant magnetic flux den®ty



that is assumed constant by taking small magnesim&ds number much smaller than the fluid Reynolds

number. The surface of the rotating disk is mairdiat a uniform temperatuflg, while the temperature

and pressure of the ambient fluid dreand P,,, respectively. Considering the effect of velogtip is very

important and should be included in the modelindla# field for the more accurate prediction. Irethase
of slip flow theory, one can declare that the fluilocity at the surface is different from the wadllocity
compared to the local velocity gradient in normatction.

The appropriate boundary conditions subject toarmfsuctionw , through the disk and slip condition

are introduced as:

2afa—u vV = Qr+2056V, w=w, T=T,, at z=0,
g, g, 0z ©)

u-u, V-v, T T, a z -

where g, is the tangential momentum accommodation coefficiehich is usually determined empirically

[25] and depends on fluid and surface finighjs the mean free path. It is found that in theeptil flow

regime:
U, =ar, Ve =0, w,=-2az, ———pa 2(r2+ 4%)+p, @)

wherea is a constant ang, is the stagnation pressure. Hereupon, the stagnptint occurs at the origin.

The non-dimensional forms of mean flow velocitiesl aemperature distributions of Eqns. (1)-(5) akery

by Von Karman’s exact self-similar solution of tRavier-Stokes equations:

n:\/éz, u=arF(n), v=arG(n), w =./avH (n)

(8)
p=—3pa(r*+P(n)). 6(n)=( -T.)/(T, -T.).

whereF, G, H andg are the non-dimensional functions of modified dasienless vertical coordinate.

Substituting the above similarity transformatiomgéoi Eqns. (1)-(5), the nonlinear ordinary differaht

equations are obtained



H'(n7)+2F (7)=0, ©

F'(n)-H (n)F'(7)-(F (7)) +(G (7)) -M (F (n)-1)+1=0, (10)
G"(17)=H (n)G'(n7) ~2F (7)G (17) -MG (17) =0, (12)
-6 (7)~H (7)6 (1) =0, 12

where M =0B?/pa is the magnetic interaction parametE’r,=,uCp/k is the Prandtl number and primes

denote differentiation with respect a The transformed boundary conditions become

F0)=yF(0).  G(g=w+ye'(, H(Q=W, , 6(9= 1

13
F(n)-1 G(n)-0, 6(n)-0 as n-o, (13)

where y:[(z—cfv)f./a/v]/av is the slip factor, w=Q/a shows a rotation strength parameter,

W, :wo/(av)y2 is the suction/injection parameter angd <0 corresponds to a uniform suction at the disk

surface.

3. HAM solution

We choose the appropriate initial approximatioasdtisfy the above boundary conditions, as follows

Ho (7) =W, (14)
— _e_”

Fo(7)=1 Sl (15)
_ W

Go(ﬂ)_y_-l-le ) (16)

6,(n)=e™, (17)

The linear operators, (H), Lg (F), Lg (G), andLy(6) are introduced as:

oH
Ly (H )=5, (18)



0°F oF
L.(F)= —,
F( ) al72+a,7
0°’G 0G
LG(G):(?l]z +£’
_0°0 06
'—9(9)-6—,72*%1

with the following properties:

where ¢;,i =1-7 are the arbitrary constants. According to Eqns:(12),

defined as

A

OH (ma) -
2F (1),
on (7:0)

N, [H (m0), F(ma) |=

The symbolic softwar®ATHEMATICA is employed to solve theth
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(19)

(20)

(21)

(22)
(23)
(24)

(25)

the nonlinear operators are

(26)

(27)

(28)

(29)

(30)

order deformation equations (31)-



(34).

L [Hun (7) = 2m Hra (7) ] =H (1) Res m (), (31)
Le [Fon (7) =2 Fna ()] =1iHe () Re (1), (32)
Lo [Grm (7) ~2m Gumaa (7)]=1Hs (7) Ro m (1), (33)
Lo[ 60 (7) =% Ona (7) ] =7H, (7) Rom (7). (34)

where7: is the auxiliary nonzero parameter and

aH m-1 (’7)
on

RH ,m (’7) = + 2Fm—l (’7) ’ (35)

on? =0 an (36)
M (Fpa(7)-1)+1
aanm—l s a(Bm—l—n
I:QG,m (”)za—ﬂz(”)_ ZOLHn(”)T(,])-FZFn (”)Gm—l—n (”)}_M Gm—l(’])! (37)
10%6,4(n7) & 06,11 7
Runln)= o Z 208 1, () e ) -
and
we{d mst (39

are the involved parameters in HAM theory. See [R&f 26, 27], for more information about the diffat
steps of HAM. It is important to choose a propelugaof auxiliary parameter to control and speed the

convergence of the approximation series by the betpe so-called: — curve. Obviously, the valid regions

of 7 correspond to the line segments nearly paralléhéchorizontal axis. Thé—curves ofF'(0), G'(0),

H"(0), and# (0) obtained by the 2Dorder of HAM solution are shown in Fig. 2. a.

In order to acquire the optimal values of auxilipgrameters, the averaged residual errors areetdieéis:
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Res, = i +2F (n7), (40)
res, =L ) EU e (7 0w (F (7)) 2 @
res, =12 () )6 () 0 (1) -m o () @
Res, =P_1r%7(2’7)—H (n) %2’7) (43)

The residual errors for 20order of HAM solutions of Eq. (41) are illustratgdFig. 2. b, to survey the

accuracy of the present method.

4. Resultsand Discussion
The nonlinear ordinary differential equations (22) subject to the boundary conditions (13) havenbe

solved via HAM for some values of the magnetic ratdion parametel(M ) slip factor (y), rotation
strength paramete(ra)), and suction parameteé\Ns). For the present investigation, the value of thenBtl

number(Pr) is considered equal to 0.71. The values of the fdbysical parameters are mentioned in each

of the graphs and tables. Table 1 illustrates apasison between the presented results and thoseedby
Turkyilmazoglu [24] for F'(0) and G'(0) and different value of the magnetic interactiomapaeter. An

excellent agreement can be observed between thables 2-4 depict numerical values of the skin ifsict
coefficients and rate of heat transfer for différealues of the suction parameter and slip factor.

Figure 3 represents the influence of magnetic autesn parameter on the radial, tangential andlaxia
velocity components as well as temperature digiobuA drag-like Lorentz force is created by théiction
of the vertical magnetic field on the electricatignducting fluid. This drag-like force has tendemayslow
down the flow around the disk. Therefore, all vép®oundary layer thicknessedgcrease, as the magnetic

field gets stronger. It is worth mentioning thag farge resistances on the fluid particles applthasrertical
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magnetic field increases.

The effect of slip parameter on the velocity congus and temperature distribution is demonstrated i
figure 4. In the presence of the slip conditiore tfadial velocity boundary layer thickness redudas.
addition, the radial velocity profile starts frorera only in the no slip condition cases. The fluaocity
boundary layer thicknessasradial, tangential and axial directions deceeagth increasing the values of the
slip factor. In other word, the less amount of flsarawn and pushed away in the velocity direcj@s the
slip gets stronger. It is also observed that thieievaf the temperature component reduces as tpe sli
parameter increases.

Figure 5 illustrates the effect of rotation strdngiarameter on the radial, tangential and axiaborsi
components and the thermal boundary-layer thicknAdssthe rotation strength parameter increases, the
velocity profiles in tangential direction increassasd the radial velocity boundary layer thicknehs, axial
velocity component and thermal boundary-layer théds reduce. It is worth mentioning that as thatiat
parameter increases the centrifugal force pokeflulteparticles in the radial direction. The enbament in
the rotation strength parameters leads to redueeasthal velocity component, whose decrease is dube
reason that increasing rotation augments the pugngdifiuid particles in the radial direction.

Figure 6 shows the effect of suction parameter dnvelocity components and the temperature
distribution. Applying suction at the disk surfacauses to reduce all the fluid velocity profileist
phenomenon happens because of this fact that agpdyiction leads to draw the amount of fluid pésc
into the wall and consequently the velocity bougdayers decrease. In addition, the usual decay of
temperature distribution occurs for larger valuethe suction parameter.

Figures 7-a&b present the velocity contours in ahdind axial directions. As the radial coordinate
increases, the primitive radiélu) velocity component increases. This velocity congrans maximized near

the surface of the disk i.e. at low values of ag@brdinate (bottom right hand corner of Figure).7Faom
Figure 7-b, it is obvious that the axial velocityngponent is maximized near the disk surface fovallies of

radial coordinate. As we depart from the surfabe, dxial velocity component decays. In order toehav
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better grasp of the fluid flow, the velocity vedare shown in figure 7-c. Fluid is clearly drawraifan like
mechanism outwards along the radial coordinate endhe negative axial direction. This template

characterizes the Von Karman swirling flow [1].

5. Conclusions

In the current study, a mathematical formulatios baen derived for an MHD stagnation flow due to a
porous rotating disk in the presence of the vejoslip. HAM is used to solve the system of ordinary
differential equations. The present semi numercallytical simulations agree closely with the poesi
studies for some especial cases. HAM has been stwwa a very strong and efficient technique irdiig
analytical solutions for nonlinear differential edgns. The effects of the five key thermo-physical
parameters governing the flow i.e. magnetic int@oacparameter, slip factor, rotation strength pzeter,
and suction parameter on the all dimensionlesscitgloomponents and temperature distributions dtage
skin friction coefficient and local Nusselt numbeve been presented graphically and interpretektails.
These computations have provided some further htsigto the fluid mechanics and thermodynamics of

proposed rotating disk MHD systems coupled withieaicspace propulsion engines.
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Figures
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Figure 1: Schematic of the flow configuration amdmetrical coordinates.
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fird

Figure 7: a) Radial velocity contour b) Axial veltyccontour and c) Vector analysis with the vector

variables ofu andw whenM =w=-W, =a=1, y=0.1andv =15x10°(m?/s).

21



Tables
Table 1:

Comparison between the results of present study tivé results reported by Turkyilmazoglu [24] ﬂéf(O)

and -G'(0) and different values of the magnetic interactiarameter whem = 2 andw_ = y = 0.

F'(0) -G'(0)

Present Ref. [23] Present Ref. [23]

0 2.2956422837112.2956422869 2.393661963184 2.3936619498

1 2.453325131091 2.4533251351 3.041585272826 3.0415852559

2 2.6208628419492.6208628461 3.601362344177 3.6013623342

5 3.106851835286 3.1068518380 4.956835245622 4.9568352387

Table 2:

Numerical values of the radial skin friction coeféint (F(O)) for different values of the suction parameter

(W, ) and slip factoy) whenm =w=1.

0 1.85378891 0.98591725 0.66338194

-1 2.45041073 1.12259375 0.72122532

-2 3.15845036 1.24170373 0.76749355

-3 3.94772094 1.34041906 0.80340936
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Table 3:

Numerical values of the tangential skin frictionetfaccient (—G’(O)) for different values of the suction

parameterW,) and slip factofy) whenm =w=1.

0 1.47013629 0.93615979 0.64949106
-1 2.12505924 1.09603405 0.71466016
-2 2.88698318 1.22751493 0.76430872

-3 3.72025303 1.33258491 0.80178116

Table 4:

Numerical values of the heat transfer réted (0)) for different values of the suction paramefét,) and

slip factor (y) whenm =w=1.

0 0.70526567 0.83129079 0.87249549
-1 1.21486195 1.34816468 1.38390410
-2 1.80074808 1.92938227 1.95818403

-3 2.43044518 2.54972643 2.57242006

23



