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Abstract: In this paper we have obtained vacuum solutions of the plane symmetric 
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deceleration parameter. The physical and geometrical aspect of the model is also 

discussed. 
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1. INTRODUCTION: 

Among the various modification of general relativity, the f(R) theory of gravity is treated 

most seriously during the last decade. The f(R) theory of gravity has also been helpful in 

describing the evolution of the universe.  It provides a natural gravitational alternative to 

dark energy. Carroll et al.(2004) explained the presence of a late time cosmic 

acceleration of the universe in f(R) gravity. Bertolami et al.(2007) have proposed a 

generalization of f(R) modified theories of gravity by including in the theory an explicit 

coupling of an arbitrary function of the Ricci scalar R with the matter Lagrangian density 

mL . As a result of the coupling, the motion of the massive particles is non-geodesic, and 

an extra force, orthogonal to the four-velocity, arises. The connections with Modified 

Newtonian Dynamics (MOND) and the Pioneer anomaly were also explored. This model 



 

was extended to the case of the arbitrary couplings in both geometry and matter by Harko 

(2008). The astrophysical and cosmological implications of the non-minimal coupling 

matter-geometry coupling were extensively investigated by Harko (2010). The Palatini 

formulation of the non-minimal geometry-coupling models was considered by Harko et 

al.(2010).  Harko & Lobo (2010) proposed a maximal extension of the Hilbert-Einstein 

action, by assuming that the gravitational Lagrangian is given by an arbitrary function of 

the Ricci scalar R and of the matter Lagrangian mL . The f (R) gravity provides a very 

natural unification of the early-time inflation and late-time acceleration. It describes the 

transition from deceleration to acceleration in the evolution of the universe (Nojiri and 

Odintsov 2007, 2008). Over the past few years, Many works are available in literature 

(Capozziello and Francaviglia 2008; Abdalla et al. 2005; Nojiri and Odintsov 2007b; 

Harko 2008) addressing the well-known issues of stability (Dolgov and Kawasaki 2003), 

singularity problem (Frolov 2008), solar system test (Chiba 2003b), etc. The general 

schemes for modified gravity reconstruction from any realistic FRW cosmology have 

been discussed by Nojiri and Odintsov (2006). It seems that f (R) gravity models pass all 

known observational local test currently (Elizalde et al. 2010, 2011; Nojiri and Odintsov 

2011). Shamir (2009, 2010a, 2010b), Sharif and Zubair (2010a), Shamir (2010), Sharif 

and Kausar (2011a, 2011b, 2011c), and Akta¸s et al. (2012) have studied anisotropic 

models in f (R) theory.  Cappozziello et al. (2009), Felice & Tsujikawa (2010), Zhai & 

Liu (2011) have studied various aspects of f (R) theory of gravity in detail. Recently, 

Singh et al (2013) have studied Functional form of f (R) with power-law expansion in 

anisotropic model.  



 

                            These are the motivations to consider f(R) theory of gravity by large 

number of researchers. In this paper we have considered the plane symmetric space-time 

in f (R) gravity. The general solutions of the field equations of plane symmetric space-

time have been obtained under the assumption of special form of deceleration parameter. 

The physical and geometrical aspects of the model are also discussed. 

2.   f(R) THEORY OF GRAVITY: 

We know that the )(Rf  theory of gravity is the generalization of general relativity.  

The action for )(Rf  theory of gravity is represented by  
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Here )(Rf   is a general function of the Ricci scalar  R and 
mL  is the matter Lagrangian. 

One should note that above action is obtained just by replacing R  by )(Rf in the 

standard Einstein-Hilbert action expression.  

 Now, by varying the action given by equation (2.1) with respect to the metric ( µνg ), we 

get the corresponding field equations of  f(R) gravity as 

   
( ) ( ) µννµµνµν gRFgRfRRF +∇∇−− )(

2

1
□ ( ) µνκ TRF = ,                          (2.2) 

where ( ) dRRdfRF /)(= , □ µ
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is the covariant derivative, µνT  is the standard 

matter energy-momentum tensor derived from the Lagrangian mL  and )/8( 4cGπκ =  is 

the coupling constant in gravitational units.  

Now contracting the field equations (2.2), we get  

          ( ) ( ) 32 +− RfRRF □ ( ) TRF κ= ,                                                          (2.3) 

and in vacuum (i.e. for 0=T ), we have 



 

         ( ) ( ) 32 +− RfRRF □ ( ) 0=RF .                                                              (2.4) 

From equation (2.4), we get  
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The equation (2.5) gives an important relationship between )(Rf  and ( )RF  which will 

be used to simplify the field equations and to evaluate )(Rf  also. 

3. METRIC AND THE FIELD EQUATIONS: 

In view of the importance of the plane symmetry, we consider the line element in plane 

symmetric form [Zhang & Noh 2009, Setare & Momeni 2010, Shen & Zhao 2012]  as 
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where  A  and  B   are functions of the cosmic time t only. 

The Ricci scalar for the line element (3.1) has value 
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where overhead dot (
.
) represents derivative with respect to time t. 

Using equation (2.5) in the vacuum field equations (2.2) (i.e. for 0=T ),  we have 
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Since the metric (3.1) depends only on t, one can view (3.3) as a set of differential 

equations  for )(tA , )( tB  and )(tF .  

It follows from equation (3.3) that the combination    
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is independent of the index µ and hence 0=− νµ KK for all µ and v. 



 

Here µK  is just a notation for the traced quantity. 

The field equations in )(Rf  gravity for the metric (3.1) with the help of equation (3.4)  

 [ for ,0,0 2010 =−=− KKKK  and 030 =− KK  respectively] are given by     
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where overhead dot (
.
) denotes derivative with respect to time t. 

4. SOLUTIONS OF THE FIELD EQUATIONS: 

The field equations (3.5) and (3.6) are two non-linear differential equations with three 

unknowns  A , B  and F  . In order to solve this system completely, we use a special 

form of deceleration parameter defined by Singha and Debnath (2009) as 

                   
α

α

aa

aa
q

+
+−=−=

1
1

2
&

&&
,                                                                   (4.1)           

where 0>α is a constant and a  is scale factor of the universe.  

After solving equation (4.1) one can obtain the mean Hubble parameter H  as 
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where 0>k  is a constant of integration. 

On integrating equation (4.2), we obtain the mean scale factor as  

                             αα 1)1( −= tkea .                                                                                 (4.3) 

In view of space time (3.1),  the spatial volume V  and   average scale factor a  will be 

                   BAV 2=    and    3/12 )( BAa =  .                                                     (4.4) 



 

The mean Hubble parameter H  will be 
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where 
B
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=== ,  are the directional Hubble parameters in the directions 

of yx ,  and z  axes respectively.   

Now, subtracting equation (3.6) from equation (3.5), we get 
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After solving equation (4.6), one can write the metric functions A  and B   explicitly as 
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where 1c and  2c  are constants of integration. 

Now, we use the power-law to solve the integral part in the above equations. The power-

law relation between scale factor and scalar field has already been used by Johri and 

Desikan  (1994). Kotub Uddin et al.(2007) ,  Sharif  & Shamir (2009) have established a 

result in the context of )(Rf gravity which shows that  m
aF ∝ .  

Thus, using  power-law relation between F and  a, we have 

                                        malF =  ,                                                                                (4.9)       

where  l  is the constant of proportionality and m  is any integer. 

Using equations (4.3) and (4.9) for 2,1 == αk and 2−=m  in the equations (4.7) and 

(.4.8), we obtain the scale factors as  
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where 1c and  2c  are constants of integration and l  is the constant of proportionality. 

Some Physical Properties: 

Using equations (4.10) and (4.11), the directional Hubble parameters in the directions of  

x , y and z -axis  are found to be 
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The mean Hubble parameter  H  is found to be   

                    
)1( 2

2

−
=

t

t

e

e
H  .                                                                              (4.14) 

Using equations (4.10) and (4.11) in equation (4.4), the volume V  of the universe is 

given by  
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The expansion scalar H3=θ  is given by 
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The mean anisotropy parameter ∆  of the expansion is define as 
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where ( )3,2,1=iH i  represent the directional Hubble parameters. 

 The anisotropy parameter ∆  of  the expansion is found to be   
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The shear scalar is define as 
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The deceleration parameter is define as 1
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Using equations (4.10) and (4.11) in equation (3.2), the Ricci scalar for Bianchi type-I 

model is given by 
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Using equation (2.5), we obtain the function of  Ricci scalar i.e. )(Rf  as 
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5. DISCUSSION: 

 

(i) From figure 1, one can observe that the spatial volume  V    vanishes at 0=t . It 

expands exponentially as time t increase and becomes infinitely large as ∞→t .
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                                 Figure (1): The variation of   V  vs. t   for   .2,1 == αk  
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                              Figure (2): The variation of θ  vs. t   for  .2,1 == αk  

 

From figure (2), it is observed that the expansion scalar θ  starts with infinite value at 

0=t  and then rapidly becomes constant after some finite time. 
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                                 Figure (3): The variation of ∆  
vs. t   for  .2,1 == αk  

 

 

From figure (3), it is observed that anisotropy ∆  increases as time increases and then 

quickly decreases to zero after some time and remains zero after some finite time.  



 

Hence, the model reaches to isotropy after some finite time which matches with the 

recent observation as the universe is isotropic at large scale. 
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                                        Figure (4): The variation of  q  vs. t     for .2=α  

 

The deceleration parameter q  varies from 1+  to 1−  as shown in above figure (4).           

The deceleration parameter  q  is in the range 5.01 ≤≤− q  (shaded region in the fig.4). 

6. CONCLUSION:   

(i) It should be noted that the solutions given by equations (4.10) & (4.11) are different to 

the solutions obtained by Sharif & Shamir (2009) ,whereas, they are similar to the 

solutions obtained  by Reddy et al. (2014). 



 

(ii) It is  interesting to observe that, in this case, we get, the deceleration parameter q    in 

the range   5.01 ≤≤− q     which matches with the observations made by Riess et al. 

(1998) and Perlmutter et al. (1999) and the present day universe is undergoing 

accelerated expansion. It also shows that the universe accelerates after an epoch of 

deceleration. 

(iii) This idea can be explored much in the forthcoming papers. 
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