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The main interest is to study the nonlinear  ion-acoustic wave in a simple unmagnetized 15 

rotating plasma. By using the pseudopotential analysis, nonlinear Sagdeev-like wave 16 

equation has been derived, which, in turn, becomes the tool in studying different nature of 17 

nonlinear waves in  plasmas. To solve the wave equation, a special procedure known as 18 

hyperbolic method has been developed to exhibit the salient features of nonlinear waves.  19 

Main emphasis has been given to the interaction of Coriolis force on the changes of 20 

coherent structures of solitary waves e.g.  compressive and rarefactive solitary waves along 21 

with their explosions or collapses. Further  variation of  nonlinearity has been considered to 22 

exhibit  shock waves, double layers, sinh-wave, and finally formation of sheath  structure has 23 

been highlighted in the dynamical system. It has also been shown the formation of a narrow 24 

wave packet with the generation of high electric pressure and the growth of high energy 25 

which, in turn, the phenomena of radiating soliton causes by the Coriolis force. Thus the 26 

observations could be of interest to study all kinds of nonlinear waves in astro-plasmas 27 

wherein rotational effect must be taken  up, what exactly we are looking forward to do 28 

research. 29 
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1. INTRODUCTION  38 
 39 

During last several decades, the study on nonlinear solitary wave in various configurations of 40 

plasmas has received a tremendous momentum in connection with  the problems related to 41 

laboratory and space plasmas. Since the observations on  soliton   in water wave (Scott[1]), 42 

and thereafter such  nonlinear wave have been carried   through the augmentation of  a 43 

Korteweg-deVries equation[2] (called as K-dV equation). Washimi and Taniuti[3]  were 44 

probably the pioneers who, by the use of reductive perturbation technique, derived that well 45 

known nonlinear K-dV wave equation in plasma and finds the steady state solution which  46 

describes solitary waves (or solitons).  In the same decade, another pioneer method by 47 

Sagdeev[4] derived the nonlinear wave phenomena in terms of an energy integral equation 48 

and analyzed rigorously soliton dynamics along with  other nature of nonlinear waves in 49 

plasmas. Both the equations have made an unique platform in scientific community and  50 

bridges successfully theoretical observations with experiments  in plasmas[5, 6] as well as 51 

with the satellite observations in astroplasmas[7,8] . Many other authors have studied the 52 

soliton in various plasma models among which  Das[9] observed first a    new  nature of 53 

solitary waves in plasma-acoustic modes causes by the presence of an additional negative 54 

ions making a  heuristic   milestone in soliton dynamics. Latter all those  observations yield   55 
successfully  in  spaces (Wu et al.[7]) and laboratory plasmas (Watanabe[10], Lonngren[11]). 56 

Parallel work has been seen later in discharge phenomena (Jones et al.[12]) and have 57 

shown  the constituent effect, even for small percentage of additional mult-temperature 58 

electrons, shows  new features in plasma as similar to those have observed by Das[9] in 59 

negative ion-plasmas. Further thorough advancements have been  derived the occurrences 60 

of nonlinear ion-acoustic solitary waves of different kinds, e.g.  compressive and rarefactive 61 

solitons, by many authors (Chanteur et al.[13], Raadu[14], Das et al.[15], and references 62 

therein)  as well as in experiments  (Nishida et al.[16]).  Study furthered latter for new  63 

findings  as spiky and explosive solitary waves along with double layers (Nejoh et al.[17], 64 

Das et al.[18]) in various plasma environments. Again the interest has been widened in 65 

presence of magnetic field  which  yields  also the formation of compressive and rarefactive 66 

solitons (Kakutani et al.[19], Kawahara[20]) but with the variation of dispersive effects 67 

generated by the variation of magnetic field.  However, fewer observations have been made 68 

to the role of dispersive effect showing the compressive and rarefactive solitons. Actual 69 

argument lies on the derivation of nonlinear wave  in fully ionized plasma which  does not 70 

ensure the variation of dispersive effect and thus could not sustain such behaviour in solitary 71 

waves. But the magnetized plasma shows the occurrences of compressive and rarefactive 72 

solitons (Kakutani et al.[19], Kawahara[20] ) which arises due to the effect of embedded 73 
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magnetic field in dispersive term. Again several  works have  been encouraged by many  74 

authors (Haas[21], Sabry et al.[22], Chatterjee et al.[23]) to study the inherent features of 75 

solitary wave  in Quantum plasma. Overall studies on soliton dynamics in plasmas depend 76 

on the nature of nonlinearity and dispersive effects. Both the nature are found in space (Wu 77 
et al.[7] ) and laboratory plasmas (Watanabe[10], Aossey et al.[24]) and concluded that 78 

plasma contaminated with an additional negative charge could exhibit many different nature 79 

on solitary waves. Parallel works, coined as dust acoustic waves(DAW),  have been carried 80 

out in space plasma environments contaminated with negative dust charged grains[25]. 81 

Since its theoretical concept in dusty plasma, probably first by Rao et al.[26 ], and thereafter 82 

supported by the experiments of Barkan et al.[27], studies have the growing  interest  in 83 

every region of spaces e.g. in planetary rings, earth’s magnetosphere, interstaller clouds, 84 

over the Moon’s surface [28-29] and references therein) etc. Numerous investigations on 85 

nonlinear wave phenomena studied theoretically relying on the experiments and satellite 86 

observations,  and deserve the  merit as well. But we are very  much reluctant to cite all the 87 

papers here. Despite that some papers which are ideal models for producing soliton 88 

dynamics  and have been continuously  observing in space plasmas[30], and  are  worthy to 89 

know the studies.  Recently works on theoretical models of unmagnetized or magnetized 90 

plasmas with temperature effect[31]    nonlinear phenomenon as of sheath formation in  91 

inhomogeneous plasma arises due to density gradient [32]  as  well as in astroplasmas with 92 

electron-positron-ion-plasmas[33-34] especially observable in the  pulsar 93 

magnetospheres[35], dust charging variation effect[36], nonlinear phenomena in relation to 94 

the observations of spokes in the Saturn’s B ring[37]  are to be quoted.  Results  have 95 

derived  many aspects of nonlinear waves with  the  scientific values which have become 96 

ubiquitous in plasma dynamics and hope to  further the works for new  features of nonlinear 97 

waves in astroplasmas as similar to those have obtained  in present paper because of 98 

Coriolis force. 99 

.   100 

Again the  study has given attention latter to those  findings in astroplasmas observable  by  101 

scientific satellites, and  having the  growing interest even though fewer observations have 102 

been made by  Freja Scientific satellite[7] as well as by  manmade satellites in ionosphere. 103 

Now, as and when, study to be exercised in astroplasmas, it is very much necessary to 104 

consider the plasma model under the interaction of rotation. It is observed that the heavenly 105 

body under slow rotation, however small it might be, shows interesting findings in 106 

astrophysical environments. Later, based on such observations, linear wave propagation has 107 

been studied showing the interaction of Coriolis force in an ideal lower ionospheric plasma. 108 
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Because of  rotation, two major forces known as Coriolis force and centrifugal force 109 

(Chandrasekhar[38], Greenspan[39]) play very important role in the dynamical system. But, 110 

because of slow rotation approximation, centrifugal force in the dynamics could be ignored, 111 

which could be common applicable in the study of wave in many astroplasmas. Based on 112 

Chandrasekhar’s proposal[40] on the role of Coriolis force in slow rotating stars, many 113 

workers have studied the nature of wave propagation in rotating space plasma 114 

environments. Lehnert[41], and  study of  Alfvén waves finds that the Coriolis force plays a 115 

dominant role on low frequency Alfvén waves leading to the explanation of solar sunspot 116 

cycle. Earlier knowledge pointed out that the force generated from rotation, however small in 117 

magnitude, has the effective  role in slow rotating stars [40,41] as well as in cosmic 118 

phenomena[(Alfvén[42]). Latter, from the theoretical point of view, linear wave propagation 119 

had been studied in rotating plasma to show the interaction of Coriolis force 120 

elaborately(Bajaj & Tandon[43], Uberoi and Das[44]).  Uberoi and Das[44],  based on the 121 

linear wave analysis,   studied the plasma wave propagation to show the interaction of 122 

Coriolis force  in lower ionospheric plasmas and conclude that even the role of slow  rotation 123 

can not be ignored otherwise observations might be erroneous. Further, it has shown that 124 

the Coriolis force has a tendency to produce an equivalent magnetic field effect as and when 125 

the plasma  rotates (Uberoi and Das[44]). Interest has then widened well  to  theoretical and 126 

experimental investigations  because of its great importance in rotating plasma devices in 127 

laboratory and in space plasmas.  But, earlier works were limited to study the linear wave in 128 

simple plasmas. Whereas, above observations indicates that the nonlinear plasma-acoustic 129 

modes in rotating plasmas might expect new features. Das and Nag [45, 46] have shown  130 

the interest in studying the  nonlinear wave phenomena with  due effect of  rotation as 131 

parallel to  astrophysical problems  observable in slow rotating stars (Chandrashekar[40], 132 

Lehnert [41]) as well as  in cosmic physics (Alfvén[42]) and also in an ideal plasma 133 

model(Das and Uberoi[44]). Nonlinear wave observation results the formation of rarefactive 134 

and compressive solitons due to  the interaction of Coriolis force generated from the concept 135 

on plasma  having slow rotation (Das and Nag [45]). Study has shown  the formation of  a 136 

narrow wave packet with the variation of rotation wherein a creation of  high electric force 137 

and magnetic force appear. As a result of which, density depression occurs and thereby 138 

causes the  radiation-like phenomena coined   as soliton radiation (Karpmann[46], Das and  139 

Sen[47]). Again, Mamun[48] has shown the different nature of small amplitude waves 140 

generated in high rotating neutron stars or pulsar and concludes that the variation of  rotation 141 

causes the soliton radiation termed as pulsar radiation. Latter Moslem et al.[49] executed  142 

such observations convincingly in pulsar magnetospheres.  143 
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In order to see the interaction of small rotation on the existences of various nonlinear 144 

plasma-acoustic waves, we have considered a plasma rotating with an uniform angular 145 

velocity about an axis making angle θ with the direction of plasma-acoustic wave 146 

propagation. Further, in contrast to the steady state method, investigation lies in finding the 147 

nonlinear solitary wave solution by a modified mathematical approach known as sech-148 

method (or tanh-method). In sequel to earlier works, the present paper rekindles the dynamical 149 

behaviours on nonlinear waves rigorously with the expectations of new findings on soliton 150 

dynamics, shock waves, double layers etc. 151 

 152 

2.1 BASIC EQUATIONS AND DERIVATION OF NONLINEAR WAVE EQUATION 153 

 154 

To study the nonlinear solitary wave propagation, we consider a plasma consisting of 155 

isothermal electrons (under the assumption Te >> Ti) and positive ions. Here nonlinear 156 

acoustic wave propagation has been taken  unidirectional say along x-direction. We assume 157 

the plasma is rotating with an uniform angular velocity,  around an axis making an angle θ 158 

with the propagation direction. Further the plasma is having the influence of Coriolis force 159 

generated from the slow rotation approximation. Other forces might have effective role in the 160 

dynamics but all have been neglected because of having the aim to know the effect of 161 

Coriolis force in isolation. The basic equations governing the plasma dynamics are the 162 

equations of continuity and motion and, following Uberoi and das.[44], with respect to a 163 

rotating frame of reference, can be written  in normalized forms as 164 

 165 
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where the normalized parameters are  defined as n = ni / n0,      x = x /,    vx,y,z = (vi)x,y,z / Cs,   174 

t = t ci ,   = Cs / ci , Cs = ( kTe/m i )1/2,  ci = eH/m i  with =2.  ωci and   denote 175 

respectively  the ion-gyro frequency and ion-gyro radius, Cs  is the ion acoustic speed.   H = 176 

2m/qα  has been produced due to the rotation,  m i is the mass of ions moving with velocity 177 

vx,y,z ,  and n be the  density.  178 

Basic equations are supplemented by Poisson equation which relates the potential  with  179 

the mobility of charges as  180 

2 2

2 2
d
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x
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 
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ekT

n e


 
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 

   is the Debye length            (5)                                                                      181 

  182 

For the sake of mathematical simplicity, equations for electrons are simplified to Boltzman 183 

relation as  184 

                                  exp( )en                                                                      (6)                                                                                                                              185 

where  = e/kTe is the normalized electrostatic potential and  ne is the electron density normalized 186 

by n0 (= ni0 = ne0). 187 

Now to derive the Sagdeev potential equation, pseudopotential method has been employed which  188 

needs to describe plasma parameters  as the function of    [ =  (x −Mt)] with respect to a frame 189 

moving with M (Mach number) and −1 is the width of wave. Now using these transformations 190 

along with appropriate boundary conditions[50] at    given as  191 

 192 
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                                                                                                                                                                                                                                                         197 

By using the transformation, basic Eqs.(1) – (4) are reduced to the following ordinary 198 

differential equations 199 

 200 
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 208 

Now integrating  equations once, with the use of appropriate boundary conditions at  , 209 

 Eq.(8) evaluates vx as  210 

 211 
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The substitution of vx into Eqs.(9) and (10) gives 214 
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  Again use of  vy in Eq.(10) evaluates vz  as  219 

 220 
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                                                                                    222 

We, substituting Eqs.(13) and (15) in Eq.(14), obtain the nonlinear wave equation  as   223 

 224 
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                                                                                                                                                                                  226 

  where 
2

3( ) 1 M dnA n
dn

 


  and  ( , )V M  which could be regarded as modified  227 

Sagdeev potential. Multiplying both sides of  Eq.(16) with A(n) and thereafter mathematical 228 

manipulation followed  with once integrating in the limit  = 0 to  ,  Eq.(16) evaluates as  229 

 230 
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 232 

A(n), which is a function of plasma constituents,  plays the main role in finding the different 233 

nature of  nonlinear wave phenomena. This is the desired equation for studying nonlinear 234 

waves as to derive the sheath formation along with different acoustic mode in plasmas. But, 235 

due to the presence of A(n), solution of Eq.(17 ) cannot be evaluated analytically, and 236 

consequently as for  the desired observations in astrophysical problems, we make a crucial 237 

approximation of having small amplitude nonlinear plasma acoustic modes. Mathematical 238 

simplicity has been followed by the quasineutrality condition in plasmas. This condition is 239 

based on the assumption that the electron Debye length is much smaller than the ion gyro 240 

radius, and following Baishya and Das[51]  ion density approximates  as 241 

 242 

                               exp( )n                                                                       (18) 243 

                                                                                           244 

and A(n) can be written explicitly as 245 

 246 
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Now Eq. (17), with the substitution of Eqs.(18) and (19),  reads  as 249 
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                                                                                                                       (21)                                                                                                                                   255 
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0
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2

cosB
M
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  256 

From set of equations, d/d can be evaluated from Eq.(20), and  leads to a nonlinear equation in 257 

F(). But the solution of modified nonlinear equation requires some numerical values of plasma 258 

parameters. Again  F() has been  expanded in power series of  up to the desired order which, in 259 

turns,  exhibits  different nature of solitary waves. 260 

 261 

2.2 DERIVQATION OF SOLITON SOLUTION WITH LOWEST ORDER 262 

NONLINEARITY  IN  263 

 264 

First, we consider     1 i.e. small amplitude wave approximation and Eq. (20) modifies as 265 
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 270 

and correspondingly A(n) , following  Das et al. [52], finds  as     271 

                                     272 
2( ) 1 exp( 2 )A n M     1 M2                                                                (23) 273 

 274 

To analyze the existences of  nonlinear acoustic waves, we have used sech-method based 275 

on which wave equation derives  soliton solution in the form of sech( ) or might be in any 276 

other hyperbolic function and  extended the use of  results successfully in the astrophysical 277 

problems and in plasma dynamics(Das and  Sarma[53]).  thus we have, in contrast to steady 278 

state method, used an alternate method called as sech-method based on knowing its fact of 279 

having  soliton solution in form of sech(ξ) nature (Das and Devi[54],  Das and Devi[55]. or 280 

any other hyperbolic function. It is true that the K-dV equation, derived under the small 281 

amplitude approximation, exhibits the soliton solution in the form of sechξ or, tanhξ. We, for 282 

the need of present method, introduce transformation Φ(ξ) = W(z) with z = sechξ, which, in 283 

fact has wider application in complex plasma. Nevertheless, one can use some other 284 

procedure to get the nature of soliton solution of the  nonlinear wave equation. But, since the 285 
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sech-method is comparatively a wider range (Das and Sen[52,54]), as well as has an easier 286 

success and merit. It has been applied for obtaining soliton propagation. Using this 287 

transformation, Eq.(22) has been reduced to a Fuchsian-like nonlinear ordinary differential 288 

equation as  289 

 290 

2
2 2 2 2 2 2

1 22(1 ) (1 2 ) 0d W dWAz z Az z A W A Wdzdz
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                                292 

Eq.(24)  has a regular singularity at z = 0  and encourages the fundamental procedure of 293 

solving the differential equation by series solution technique and follows the most favourable 294 

straightforward technique known as Frobenius method(Courant & Friedricks [56]). Now, to 295 

solve the Eq.(24), W(z) is assumed to be a  power series in z as : 296 
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and the use  derives recurrence relation as      300 
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                                                                                                                          (26) 303 

                                   304 

The nature of roots from the indicial equation determines the nature of solitary wave solution 305 

of the differential equation and thus the nature of nonlinear wave phenomena in plasma. The 306 

problem is then modified to find the values of ar and . The procedure is quite lengthy as 307 

well as tedious. To avoid such a laborious procedure, we adopt a catchy way(Das and 308 

Sarma [53]) to find the series for W(z). We truncate the infinite series (26) into a finite one 309 

with (N+1) terms along with ρ = 0. Then the actual number N  in series W(z) has been 310 

determined by the leading order analysis in Eq.(26) i.e. balancing the leading order of the 311 

nonlinear term with that of the linear term in the differential equation. The process 312 
determines N = 2 and W (z) becomes  313 
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 314 

                                       2
0 1 2( )W z a a z a z                                                (27)                                           315 

 316 

Substituting expression(27) in Eq.(24) and, with some algebra, the recurrence relation 317 

determines the following expressions  318 

 319 
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 321 

− 2 A a1 − A1 a1 + 2A2 a0 a1 = 0                                                                         (29) 322 

 323 

42 A a2 − A1 a2 + A2 a1
2 + 2 A2 a0 a2= 0                                                             (30) 324 

 325 

−22 A a1 + 2 A2 a1 a2 = 0                                                                                   (31) 326 

 327 

−6 2 A a2 + A2  a2
2    = 0                                                                                     (32) 328 

 329 

From these recurrence relations, we, based on some mathematical simplification, fllowing 330 

Das et al. [58], as desires obtain the value of a’s and  as 331 

 332 

a0 = 0,         a1 = 0,         1
2

2

3
2

Aa
A

 
  
 

,         1

4
A
A

       333 

 334 

and consequently the solution obtains as  335 

 336 

21

2

3
( , )

2
A

x t ech
A

x Mts


 
   
   

  
                                                                     (33)     337 

                                                                                      338 

where   
1

4A
A

    is the width of the wave.                                         339 

The solution represents  solitary wave profile and fully  depends on the variation of A1 and 340 

A2. 341 

 342 
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2.3 RESULTS AND DISCUSSIONS 343 
 344 
Study describes the derivation of nonlinear wave equation as Sagdeev potential like 345 

equation in rotating plasmas. The Results show a soliton profile  derives from the first order 346 

approximation on  Sagdeev potential equation, and  fully depends on the variation of A1 and 347 

A2 along with variation of θ i.e. for different magnitudes of rotation and Mach number, M. 348 

Different plasma configurations have the different values in M. Its variation has the restriction 349 

by the plasma configuration and, for some other complex configuration. However, we, 350 

without loss of generality, have considered the Mach number greater than one for the 351 

numerical estimation. We plot the variation of A1 and A2      in Fig.1 for some  typical  352 

prescribed plasma parameters of varying  Mach number, M with different,  , out of which,  353 

variation of A1  shows be positive always and causeway the soliton profile yields a  schematic 354 

variation with the changes of A1. 355 
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Fig 1: Variation of A1and A2 with Mach number for different angles of rotation. 357 

 358 

Thus  the amplitude depends crucially on the variation of A2 as it could be  positive or  359 

negative depending on  and M, and thereby highlights compressive soliton in the case of A2  360 

being positive  while it shows the rarefactive nature for A1 and A2 having opposite signs. 361 

Fig.2 shows that rarefactive soliton could be observed  in the case of small Mach number 362 

(i.e.  when A2 < 0)    and, with increases,  it changes from rarefactive to compressive soliton 363 

leaving behind a critical point at which A2 goes to zero  and existences of soliton profile  364 

breaks down. Thus the Coriolis force introduces a critical point even in a  simple plasma at 365 

which A2 goes to zero, and consequently, the formation of soliton will disappear. Thus the 366 

Coriolis force shows a destabilizing effect on the formation of soliton in plasma-acoustic 367 

modes. 368 
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Fig 2 : Variation of Amplitude with Mach number for different angles of rotation.  370 

Again, at the neighborhood of  critical point, the width of the solitary wave narrows down 371 

(amplitude will be large) because of which soliton collapses or explodes depending  372 

respectively  on the conservation of energy in solitary wave profile. Now the explosion of the 373 

soliton propagation depends on the amplitude growth wherein soliton does not maintain the 374 

energy conservation. Otherwise the case of preserving of the energy conservation  leads to 375 

a collapse of  soliton. Again it   describes the fact that, due to formation of a narrow wave 376 

packet, there is a generation of high electric force and consequently high magnetic force 377 

generates within the profile of soliton. Because of high energy, electrons charge the neutral 378 

and other particles as a result density depression occurs and phenomena term as soliton 379 

radiation  has been seen. Such phenomena on solitons and radiation do expect similar 380 

occurrences of solar radio burst (45, 53]. It concludes that the rotation, however small in 381 

magnitude,  plays important role in showing all together new observations in soliton 382 

dynamics even in a simplest  plasma coexisting with electron and ions.  383 

 384 

2.4 DERIVQATION OF SOLITON SOLUTION WITH SECOND ORDER 385 

NONLINEARITY   IN  AND  RESULTS 386 

In order to get rid of such observations on soliton propagation or properly to say to know more about 387 

the nonlinear solitary waves derivable from the Sagdeev wave equation, we  consider next higher 388 

order effect (i.e. third order effect) in the expansion of  and derives Eq.(17) as 389 

2
2 2 3

1 2 32

d
A A A A

d




       390 
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with  

2 2

3 2

7
1

6

cos
A

M

 
 

 
 
 

                                                                            (34) 391 

 392 

Eq.(20), under  a linear transformation as  F =   +  with  =1 and 2

33
A
A


 

  
 

, derives a 393 

special type of  nonlinear wave equation known as Duffing equation as 394 

  395 
2

2 3
1 22 0d FA B F B F

d



                                                                            (35) 396 

                                                                                                     397 

where B1 = A1 – 2 A2  + 3 A3 
2 , B2 = - A3  are used along with a relation A1 – A2   + A3 2 398 

= 0 must be followed to get a stable solution of the wave equation. Now to get the results on 399 

acoustic modes,   Duffing equation has been  solved again by tanh-method. That needs, as before, a 400 

transformations () = W(z) with z = tanh  to be used to Duffing equation causeway it gets a  401 

standard Fuschian equation as 402 

 403 

 
222 2 2 2 3

1 221 2 (1 ) 0d F dFA z Az z B F B F
dd

 


                        (36) 404 

                                                   405 

Forbenius series solution method derives a trivial solution with  N = 1, which does not ensure to 406 

derive the nonlinear solitary wave  solution. This necessitates the consideration of an infinite series 407 

which after a straightforward mathematical manipulation derives the solution as  408 

 
1

2 2
0( ) 1F z a z                                                                                            (37) 409 

                                                                                                                   410 

Following the earlier procedure with  the substituting of Eq.(37),  Eq.(36), based on  similar 411 

mathematical manipulation(see also Das & Sarma[59]),  evaluates the soliton solution as 412 

 413 

 2 1

3 2

3
( , )

3
A B x Mtx t ech
A B

s


          
  

                                                    (38) 414 

                                                                              415 

where B1 = A1- 2 A2 + 3 A3  
2 and  B2 = - A3 416 

 417 
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The solution depends on the variation of B1, B2 and thus on A2, A3 which are  varying with 418 

rotation. B1 and B2 are plotted in Fig.3 with the variation of Mach number, M and  . It is 419 

evident that the soliton existences and propagation of nonlinear wave fully depend on the 420 

varion of  rotation. For slow rotation, B1 and B2 both are negative and confirm the evolution 421 

of solitary wave propagation otherwise it has been noticed that  wave equation fails to exhibit 422 

soliton dynamics. (±) signs represent respectively compressive and rarefactive solitons 423 

appeared in the same region. The required condition for the existence of soliton propagation 424 

must be as B1 < 0, i.e. A1 + 3 A3  
2 < 2 A2 , other wise the solution will generate a shock 425 

wave occurring  for high rotation. Thus the role of slow rotation is justified for the propagation 426 

of solitary wave to be yielded in astroplasmas. 427 
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Fig 3 : Variation of B1 and B2 with Mach number for different angles of rotation  432 

 433 

2.5 DERIVQATION OF SOLITON SOLUTION WITH NEXT HIGHER  ORDER 434 

NONLINEARITY   IN    AND  RESULTS 435 

 436 

Now to avoid the singular behaviour in soliton propagation, wave equation  Eq.(17) again 437 

approximated with next higher order term truncated as : 438 

  439 

     
2

2 2 3 4
1 2 3

2 1
3 2

d A A A
d




 
 
 

                                                                (39)   440 

                                                                                                                                                                                                       441 

The procedure of tanh-method is not taken up as our intension is to use an alternate 442 

procedure to find the soliton propagation. The reason of not using the same tanh-method for 443 

solving the nonlinear wave equation as it seems to be needed an appropriate transformation 444 

for getting a standard form (Das et al.[54], Devi et al.[59]). Using some  mathematical 445 

simplification with   = 1/ , Eq.(39) has been modified as  446 

 447 

 (A1
2 - 2/3 A2    -   1/2A3 )-1/2 d   =  ½ d                                                                 (40) 448 

 449 

from which, by integrating once, the straightforward mathematical manipulation derives the 450 

solution as 451 

  452 



* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx. 
E-mail address: xyz@abc.com. 

11
2 2

32 2
2

3 113 29
c

AA A x Mtosh
A AA 


 

    
          

                                           (41)    453 

where 
1A


                                          454 

Solution depends on the variation of A1, A2 and A3  which are functions of angular velocity, 455 

Mach number and angle of rotation. It has already shown that A1 is always positive with the 456 

variation of M and θ i.e. for different magnitudes of rotation controlling the strength of 457 

rotation.    Now, because of having varying  values of A3, which can be positive or negative 458 

(shown in Fig.4).  the expression Cr =(2 A2
2 – 9A1A3) has to be controlled to be positive for 459 

the existences of nonlinear wave phenomena otherwise the  negative value of (2 A2
2 – 460 

9A1A3) leads to a shock wave.  Again based on the some typical case where A1 < A3, Wave 461 

equation (41) can be expanded as a series and along with limiting case A3  0 the solution 462 

(41) reduces to the soliton solution in sech2 (~) profile) as similar to the profile given by 463 

Eq.(33)). In alternate case along with A2 0 ,  solution deduce the soliton solution in the form 464 

of  sech(~) profile (as similar to solution given by Eq.(38)). These properties of nonlinear 465 

wave equation have discussed expeditiously elsewhere (Devi et al.[59]) and thus we are 466 

very much reluctant to repeat all here. Now from the discussions it is clear that the plasma 467 

parameters has to be controlled along with the effect of Coriolis force i.e. rotation depends 468 

on theta  and M to get the different soliton features which are quite different from the 469 

observations could be found in simple plasma(where compressive soliton exists). All new 470 

findings are due to Coriolis force generated in rotating plasmas, and concludes that the 471 

observations in astroplasmas without rotation will not be having  full information.   472 

Again Eq.(39) can be  furthered as Sagdeev potential equation as 473 
2

2 ( ) 0d V
d




 
   

 
                                                                                   (42) 474 

                                                                                                            475 

The Sagdeev potential like equation could reveal the double layers which has important 476 

dynamical features in plasmas. Eq.(42) has been transformed as  477 

 478 

 r
d p
d




 
    

 
                                                                                (43) 479 

                                                                                                         480 

where the new parameters have redefined as  481 
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 482 

3

2
Ap  and 2

3

2
3r

A
A

 
   

 
  483 

along with the double layer condition 2A2
2 = 9A1A3,   for A3 > 0.  484 

Following tanh-method[53], double layer solution has been obtained as 485 

 486 

( )1( ) 1 tanh
2 r

x Mt


 
  

                                                                   (44)                                                                             487 

 488 

Fig. 4 shows that for lower value of the Mach number and A3 takes only negative values for 489 

slow rotation, while it flips over to positive value with the increase of rotation. This may 490 

influence the formation of double layers in the rotating plasma what exactly be studies 491 

interest. Thus for plasma parameters controlled by the variation Coriolis force and Mach 492 

number, double layer solution might coexist with other solitary waves provided the higher 493 

order nonlinearity in the dynamical system is incorporated. Moreover the control might 494 

require  necessary condition on A1,  A2, A3 along with the necessary condition on (2 A2
2 – 495 

9A1A3). 496 

 497 
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Fig. 4: Variation of A3 with Mach number for different angles of rotation. 499 

 500 

2.6 DERIVQATION OF SOLITON SOLUTION WITH NEXT HIGHER  ORDER 501 

NONLINEARITY    IN   AND  RESULTS 502 

2.7  503 
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In order to further  investigation on  nonlinear wave phenomena derivable from Eq.(17) with 504 

the consideration of  next higher   order nonlinearity in  , Eq.(17) has been  written as  505 

2
2 2 3 3 4

1 2 3 4

d
A A A A

d






      

 
 
 

                (45)                                                                                506 

where,  
2

2
1 21 cosA

M


 
 
 

  , 
2 2

2 2

31
2

cosA
M

  
  

 
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2 2

3 2

7
1
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A

M

 
 

 
 
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 507 

 and 
2 2

4 2
151

24
cosA
M

  
 
 

   508 

Using the transformation F =  +  with  =1 and 3

44
A
A

    Eq.(45) has been simplified as   509 

2
4

2 0d Fa bF cF
d

                                                                                         (46) 510 

                                                                                                            511 

where 2a  ,  2 3
1 2 3 42 3 4b A A A A      , and 4c A  , supported by two 512 

additional conditions  2 3
1 2 34 4 3 0A A A      and   2 32 3 0A A    513 

 514 

Eq. (46) resembles very much to Painleve equation. To follow the proposed tanh-method, 515 

the process encounters a problem of getting  N = 2/3 by balancing the order of linear and 516 

nonlinear terms. Thus the alternate choice the solution to  be some higher order of sech- 517 

nature. Thereby  solution has been  obtained as  518 
1

22 3 3
3 1 2 3 4 3

4 4

2 3 4
( , )

4 2
A A A A A x Mtx t sech
A A

  


               
            (47) 519 

                                         520 

The mathematical analysis reveals that, Sagdeev potential equation with higher-order 521 

nonlinearity admits the compressive solitary wave or double layers depending on the nature 522 

of the expression under the radical sign which are  dependable on rotation and Mach 523 

number.  524 

 525 

Fig. 5 shows that slow rotation maintains the evenness of the solitary wave propagation 526 

while the increases in magnitude of rotation (signified by higher values of the angle of 527 

rotation, ) the amplitude shows a discontinuity, which might explain  the explosion or 528 
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collapse in solitary wave. In such phenomena, there is either conservation of energy 529 

(collapse of solitary wave), or dissipation of energy (as in case of explosion) which may be 530 

related as the similar cause of occurrences of  solar flares, sunspots and other topics of 531 

astrophysical interest(Wu  et al.[7], Karpman[46], Gurnett[60]). 532 
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Fig 5:- Variation of amplitude of the solitary wave with Mach number. 535 

 536 

The procedure ensures that continuation could be interesting in  finding the features of 537 

soliton propagation in a wide range of configurations, along with the existences of  narrow 538 

region in which a shock like wave is expected and study has been furthering   by the use of  539 

order effect in  nonlinearity.  540 

 541 

2.7 DERIVQATION OF SOLITON SOLUTION WITH n-th ORDER NONLINEARITY       542 

      IN   AND RESULTS 543 

 544 

 545 

To generalize the analysis, Sagdeev potential equation is expanded up to the n-th order 546 

nonlinearity and following Das and Sarma[47]  the solution is obtained  as 547 

  

1
21

1 1( , )
n

n n

n n

x Mts
A Mx t ech
nA A 


 

   
   

  
   


                                         (48)                                                         548 

 549 

where   = M1/2   and M is a linear combination of A1, A2,  …………, An 550 

Eq. (48) gives shock wave solution depending on the sign of the quantity under the radical. 551 
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 552 

Now to find out how the higher order solution of Sagdeev potential equation expects other 553 

possible acoustic modes, we integrate the Eq. (17) to obtain  554 

 555 
2

2 2 3 4 4
1 2 3 4

2 1 2
3 2 5

d A A A A
d




 
 
 

                                            (49)                                                             556 

 557 

Next suitable mathematical transformation and using proper boundary conditions, the 558 

Equation can be transformed to the following form 559 

  560 
2

2 2 3( )p
d
d




    
 
 
 

                                                                     (50) 561 

                                                                                           562 

Comparing  Eqs.(35) and (34) we obtain the  relations  4
2
5

A    and   3

4

5
12

A
p

A
 , which 563 

are supported by the condition 2
3 2 4

16
5

A A A  564 

Finally the solution comes out with a new feature showing sinh-nature. 565 

1
32

2 2

2
( ) psinh p

p
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  

           

                                                       (51) 566 

                                                                                567 
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Fig 6 : Variation of nature of the Sinh- wave for different angles of rotation. 569 

 570 

Fig.6 shows the analysis of the fourth order nonlinear approximation in plasma potential. 571 

Sagdeev potential equation derives new wave propagation  whose nature is identical to sin-572 

hyperbolic curve. The wave is also influenced by the impact of rotation parameters and the 573 

magnitude of the wave shows an increase with the decrease in value of   and  thereby 574 

showing the influence of slow rotation on the existences of nonlinear waves in plasma. 575 

 576 

3. CONCLUSIONS 577 
 578 
Overall studies exhibit the evolution of different nature of nonlinear waves showing the 579 

effective interaction of Coriolis force. The model is taken under the approximation of slow 580 

rotation which are appropriate to astrophysical plasmas, and concludes that the present 581 

studies could be an advanced theoretical knowledge as well. It has shown that the  small 582 

amplitude approximation in Sagdeev wave equation derives compressive or rarefactive 583 

solitary waves causes by the interaction of slow rotation. There is a critical point at which A2 584 

equals to zero and  causeway  derives   rarefactive nature of soliton  when A2 < 0 otherwise  585 

a changes occur from  rarefactive to compressive soliton bifurcated by the  critical point at 586 

which existences break down. At the neighborhood of this critical point, solitary wave grows 587 

to be large forming a narrow wave packet and, because of which, the soliton either collapses 588 

or explodes depending on the conservation of energy in the wave packet. Again  there is 589 

generation of high electric force and consequently high magnetic force within the narrow 590 

wave packet as a result density depression occurs and exhibits soliton radiation resembles 591 

this  phenomenon bridging with the occurrences of solar radio burst(Gurnett[60], 592 

Papadopoulos and Freund[61].  593 

Not only that, it has been observed that at the neibourhod  of the critical point wherein soliton 594 

radiation exhibited. Further with the variation of nonlinear effect along with the interaction of 595 

slow rotation derives other plasma-acoustic modes like double layers, shock waves and sin-596 

hyperbolic in the dynamical system. It has been observed that the  Mach number does not 597 

show any new observation on the existences on  solitary wave rather it reflects schematic 598 

variation on the nature of the soliton wave),  while Coriolis force interaction generated from 599 

the slow rotation, however small might be, exhibits different salient features of acoustic 600 

modes. The results emerging from the present studies  is quite different as compared to the 601 

observations and reflects that the wave phenomena in astroplasmas must consider the 602 

rotational effect otherwise the studies will not give full observations rather it misses  many 603 

acoustic modes in observations.  604 
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We have shown, in comparison to a non-rotating plasma, rotation brings into highlight all the 605 

characteristic of nonlinear plasma waves and  the wave phenomena, because of rotational 606 

effect,  can yield the generation of compressive and rarefactive solitons, double layers, 607 

shock waves etc. along with   soliton radiation similar to those in rotating pulsar 608 

magnetosphere as well as in high rotation neutron stars. The complete solution of the 609 

Sagdeev potential equation i.e. with out having any approximation on , derives a special 610 

feature on nonlinear wave  phenomena known as  sheath in plasmas. Fewer observations 611 

have been made among them recent works (Das and Chakraborty [62])  on sheath formation 612 

in rotating plasmas deserves merit. Study has shown the sheath  formation over the Earth’s 613 

Moon surface, and thereafter  finds the dynamical behaviours of dust grains levitation into 614 

sheath that too showing the important role of Coriolis force without which the results are 615 

likely  to be erroneous.  They have discussed also the formation of nebulons i.e. formation of 616 

dust clouds  over the Moon’s surface and  bridges a good agreement with some 617 

observations given by  NASA Report(2007)[63].   618 
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