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ABSTRACT

Bianchi type-III model of universe filled with a magnetized perfect fluid to-
gether with a time-varying cosmological constant is investigated in general
relativity. We assume that F12 is the only non-vanishing component of the
electromagnetic tensor Fij . We obtain exact solutions to Einstein’s field
equations by using an ad-hoc mathematical relation. The physical and ge-
ometrical behaviors of the cosmological model are discussed.
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1. INTRODUCTION

The recent cosmological observations suggest that the present observational
universe is not only expanding but also accelerating (Rieses et al.[1], Perl-
mutter et al. [2], Bennet et al. [3] etc.). The source driving this acceleration
is known as dark energy, whose origin is still a mystery in modern cosmology.
It is held that the accelerating expansion of the universe is driven by the
negative pressure of the dark energy. The cosmological term Λ is the most
simple and natural candidate for explaining the cosmic acceleration. The
cosmological term provides a repulsive force apposing the gravitational pull
between galaxies. One of the most important and outstanding problem in
cosmology is the cosmological constant problem [4−5]. A wide range of ob-
servations has suggested that the universe possesses a non-zero cosmological
constant Λ, which is considered as a measure of the energy-density of the
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vacuum [6]. The basic reason is the widespread belief that the early universe
evolved through some phase transitions, thereby yielding a vacuum energy
density which is at present is at least 118 orders of magnitude smaller than
the plank time. Such a discrepancy between the theoretical expectation
(from the modern microscopic theory of particles and gravity) and empiri-
cal observations constitute a fundamental problem in the interface uniting
astrophysics, particle physics and cosmology which is often called ‘the cos-
mological constant problem’(Cunha et al.[7]). Recent discussions on the
cosmological constant problem and consequence on cosmology with a time-
varying cosmological term are investigated by Ratra and Peebles [8], Dolgov
[9 − 11], Sahni and Starobinsky [12]. They have also suggested that in the
absence of any interaction with matter or radiation, the cosmological term
remains a constant. Linde [13] suggested that Λ is a function of temperature
and is related to the spontaneous symmetry breaking process, therefore it
would could be a function of time.

The presence of magnetic fields in galactic and intergalactic spaces is evi-
dent from recent observations by Maartens [14], Grasso and Rubinstein [15].
The large scale magnetic field can be detected by observing their effects on
the CMB radiation. These fields would enhance anisotropies in the CMB,
since the expansion rate will be different depending on the direction of field
lines (Madson [16]). Melvin [17], in his cosmological solution for dust and
electromagnetic field, has suggested that the presence of magnetic field is
not unrealistic as it appears to be because during the evolution of the uni-
verse, matter was in highly ionized state, smoothly coupled with the field
subsequently form neutral matter due to universe expansion.

The evolution of deviation from perfect isotropy is dominated by the dis-
tortion created by any anisotropic stresses to the gravitational field can
arise from magnetic fields, collisionless realistic particles, hydrodynamics
shear viscosity, gravitational waves, skew-axions field in low energy string
or topological defects. Matter fields such as magnetic fields or topologi-
cal defects have a profound influence upon the evolution and properties of
galaxies. Some general features of anisotropic stress in spatially homoge-
neous cosmology are given by Borrow [18] and anisotropic stresses in in-
homogeneous universe are studied by Barrow and Maartens [19]. Bianchi
type cosmological models are important in the sense that these are spatially
homogeneous and anisotropic, from which the process of isotropization of
the universe is studied through the passage of time. Moreover, from the
theoretical point of view, anisotropic universe has a greater generality than
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the isotropic models. Cosmological models with an incident magnetic field
for various Bianchi spaces have been investigated by several researcher viz.
Zeldovich [20], Doroshkevich [21], Tupper [22], Damio Soares [23], Tsoubilis
[24], Dunn and Tupper [25], Lorentz[26 − 28], Spokoiny [29 − 30], Roy et
al. [31] Ribeiro and Sanyal [32], Roy and Banerjee [33], Nayak and Bhuyan
[34] etc. Tikekar and Patel [35] have obtained some exact solutions of mas-
sive string of Bianchi type III space-time in the presence of magnetic field.
Verma and Shri Ram [36] have presented a Bianchi type-III model of the
universe filled with a bulk viscous fluid with time-dependent gravitational
and cosmological constants. Shri Ram and Singh [37] have obtained Bianchi
type II, III and IX cosmological models with matter and electromagnetic
fields. Bali and Jain [38] have studied Bianchi type-III non-static magne-
tized cosmological model for perfect fluid distribution in general relativity.
Sharif and Zubair [39] have investigated a Bianchi type-I cosmological model
in the presence of magnetized anisotropic dark energy. Sharif and Zubair
[40] have studied the effect of magnetic field on the dynamics of Bianchi
type-VI0 universe with anisotropic dark energy. They have also discussed
the dynamics of a Bianchi type-VI0 cosmological model with anisotropic
fluid and magnetic field [41]. Amirhaschi et al. [42] have obtained Bianchi
type III cosmological models for a perfect fluid distribution in general rel-
ativity. Further, Amirhaschi et al. [43] studied magnetized Bianchi type
III massive string cosmological models in general relativity. Subsequently,
Pradhan et al. [44−46] have presented Bianchi type III cosmological models
with perfect flow, massive string and electromagnetic field in different phys-
ical context. Adhav et al. [47] have obtained a Bianchi type-III magnetized
wet dark fluid cosmological model in general relativity. Amirhaschi et al.
[48] also presented Bianchi type III cosmological models with time decaying
vacuum energy density Λ. Recently, Amirhaschi et al. [49] have obtained
exact solutions of Einstein’s field equations with variable gravitational and
cosmological constant in the presence of a perfect fluid for a Bianchi type
III space-time.

Motivated by above works, we obtain, in this paper, a Bianchi type-III
cosmological model in the presence of a magnetized perfect fluid with time-
dependent cosmological constant. The layout of the paper is as follows: The
metric and field equations are presented first. Then, we obtain their solu-
tions by using the technique of Hajj-Bautrös [50]. We discuss the dynamical
and physical behaviors of the cosmological model. We bring finally a sum-
mary of results.
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2. THE METRIC AND FIELD EQUATIONS

We consider the spatially homogeneous and anisotropic Bianchi type-III
metric in the form

ds2 = −dt2 +A2dx2 +B2e−2mxdy2 + C2dz2 (1)

where m is a non-zero constant and A, B, C are functions of cosmic time t.

The energy-momentum tensor for a perfect fluid source in the presence of
an electromagnetic field of the form

T
j
i = (ρ+ p) viv

j + pg
j
i +E

j
i (2)

where ρ is the energy-density, p the isotropic pressure and vi the flow vector
satisfying gijv

ivj = −1. Ej
i is the electromagnetic field tensor given by

E
j
i =

1

4π

[

glbFilF
j
b − 1

4
FlbF

lbg
j
i

]

. (3)

We assume the coordinates to be comoving, so that

v1 = v2 = v3 = 0, v4 = 1. (4)

We again assume that the F12 is the only non-zero component Fij which cor-
responds to the presence of magnetic field along z-direction. The Maxwell’s
equations

∂

∂xj
(F ij

√−g) = 0 (5)

lead to
F12 = Ke−mx (6)

where K is a constant. We have taken F12 as the only non-vanishing com-
ponent of Fij due to the fact that a cosmological model which contains a
global magnetic field is necessarily anisotropic since the magnetic field vec-
tor specifies a preferred spatial direction [51].

For the line-element (1), the non-vanishing components of Ej
i are

E1
1 = E2

2 = −E3
3 = −E4

4 =
K2

8πA2B2
. (7)

In comoving coordinate, the Einstein’s field equations

R
j
i −

1

2
Rg

j
i + Λgji = −8πT j

i (8)
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together with Equations (2) and (7) for the line-element (1) lead to

B̈

B
+

C̈

C
+

ḂĊ

BC
+ Λ = −8πp− K2

A2B2
, (9)

Ä

A
+

C̈

C
+

ȦĊ

AC
+ Λ = −8πp− K2

A2B2
, (10)

Ä

A
+

B̈

B
+

ȦḂ

AB
− m2

A2
+ Λ = −8πp +

K2

A2B2
, (11)

ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
− m2

A2
+ Λ = 8πρ+

K2

A2B2
, (12)

m

(

Ȧ

A
− Ḃ

B

)

= 0. (13)

Here and in what follow a dot denotes the derivative with respect to t.

From (13), we have either m = 0 or A = µB, where µ is a constant of
integration. When m = 0, the metric (1) degenerates into Bianchi type-I
considered by Banerjee et al. [52]. As we wish to consider space-time with
Bianchi type-III symmetry, we have A = B, taking µ = 1 without loss of
generality. Then the field equations (9)− (12) reduce to

B̈

B
+

C̈

C
+

ḂĊ

BC
+ Λ = −8πp− K2

B4
, (14)

2B̈

B
+

Ḃ2

B2
− m2

B2
+Λ = −8πp+

K2

B4
, (15)

Ḃ2

B2
+

2ḂĊ

BC
− m2

B2
+ Λ = 8πρ+

K2

B4
. (16)

Now, we define some parameters for Bianchi type-III model which are im-
portant in cosmological observations. The average scale factor a and spatial
volume V are defined as

V = a3 = B2C (17)

The expansion scalar θ and shear scalar σ2 are found to have the following
expressions

θ =
2Ḃ

B
+

Ċ

C
, (18)
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σ2 =
1

3

(

Ḃ

B
− Ċ

C

)2

. (19)

The generalized mean Hubble parameter H is defined by

H =
ȧ

a
=

1

3
(H1 +H2 +H3) (20)

where H1= H2 =
Ḃ
B
, H3 =

Ċ
C

are the directional Hubble’s parameters in the
directions of x, y and z respectively.

A physical quantity of observational interest in cosmology is the deceleration
parameter q defined by

q = −aä

ȧ2
= −1 +

d

dt

(

1

H

)

. (21)

The sign of q indicates whether the model inflates or not. The positive value
of q corresponds to a standard decelerating model whereas the negative in-
dicates acceleration.

3. SOLUTIONS OF THE FIELD EQUATIONS

Here we have three non-linear differential equations (14) − (16) in five un-
knowns B, C, p, ρ and Λ. In order to obtain a consistent solutions we need
two extra conditions. Bali and Jain [38], Sharif and Zubair [41], Adhav et
al.[47] etc. have used the physical condition that the shear scalar is propor-
tional to the expansion scalar which leads to B = Cn. Instead of using this
relation, we follow Hajj-Boutrös [50] to obtain physically realistic solutions
of the field variables.

From Equations (14) and (15), we obtain

B̈

B
− C̈

C
+

Ḃ2

B2
− ḂĊ

BC
=

m2

B2
+

2K2

B4
. (22)

To get a deterministic model, we introduce the scale transformation

dT = Cdt (23)

Then Equation (22) reduces to

B
′′

B
− C

′′

C
+

B
′2

B2
− C

′2

C2
=

1

B4C2

(

2K2 +m2B2
)

(24)
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where a dash denotes differentiation with respect to new time T . Setting

r = B2, s = C2 (25)

in Equation (24), we obtain

r
′′

r
− s

′′

s
− 2

r2s

(

2K2 +m2r
)

= 0. (26)

Equation (26) involves two unknown functions r and s. To find their solu-
tions, we need two equations. To obtain two equations we insert the ad-hoc
mathematical relation

s
′′

s
+

2

r2s

(

2K2 +m2r
)

= 0 (27)

in Equation (26), then we obtain

r
′′

= 0 (28)

which, on integration, yields

r(T ) = kT + k1 (29)

where k and k1 are constant of integration. If we define τ = kT + k1, then
Equation (27) reduces to

d2s

dτ2
+

4K2

k2τ2
+

2m2

k2τ
= 0. (30)

The general solution of (30) is

s =
4K2

k2
logτ − 2m2

k2
τ(logτ − 1) +M1τ +N1 (31)

where M1 and N1 are constants of integration. By back substitution the
solution of C2 in terms of T can be written in the form

C2 = (P +QT )log(kT + k1) +MT +N (32)

where

P =
4K2

k2
− 2m2k1

k2
, (33)

Q = −2m2

k
, (34)
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M =
2m2

k
+M1k, (35)

N =
2m2k1

k2
+M1k1 +N1, (36)

are new constants.
Hence, the metric of our solutions can be written in the form

ds2 = − [(P +QT )log(kT + k1) +MT +N ]−1 dT 2+

(kT + k1)(dx
2 + e−2mxdy2) + [(P +QT )log(kT + k1) +MT +N ] dz2

(37)
4. RESULT AND DISCUSSION

Now, we discuss some physical and geometrical features of the model (37).
The isotropic pressure and energy-density of the fluid, as calculated from
Equations (15) and (16), are given by

8πp+Λ =
m2

(kT + k1)
− K2

(kT + k1)2
+

k2[(P +Qt)log(kT + k1) +MT +N ]

4(kT + k1)2

−k[Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

2(kT + k1)2
, (38)

8πρ−Λ = − m2

kT + k1
− K2

(kT + k1)2
+

k2[(P +Qt)log(kT + k1) +MT +N ]

4(kT + k1)2

+
k[Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

2(kT + k1)2
. (39)

To determine Λ, we assume that the matter field satisfies the equation of
state

p = γρ, 0 ≤ γ ≤ 1. (40)
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Then, from Equations (38), (39) and (40), we obtain

Λ =
m2(γ + 1)(kT + k1) + (γ − 1)K2

(γ + 1)(kT + k1)2
−(γ − 1)k2[(P +QT )log(kT + k1) +MT +N ]

4(γ + 1)(kT + k1)2

−k[Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

2(kT + k1)2
, (41)
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Figure 1: Plot of Cosmological Constant Λ versus T for γ = 0 (Red Line),
γ = 0.3 (Blue Line), γ = 1 (Green Line) assuming the value of constants as
m = 1, K = 2, M1 = 1, N1 = 3, k = 2 and k1 = 1.5.

8πρ =
k2[(P +QT )log(kT + k1) +MT +N ]− 4K2

2(γ + 1)(kT + k1)2
. (42)
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Figure 2: Plot of Energy density ρ versus T for γ = 0 (Red Line), γ = 0.3
(Blue Line), γ = 1 (Green Line) assuming the value of constants as m = 1,
K = 2, M1 = 1, N1 = 3, k = 2 and k1 = 1.5.

The directional and mean Hubble parameters turn out to be

H1 = H2 =
k

2(kT + k1)
, (43)

H3 =
[Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

2(kT + k1)[(P +QT )log(kT + k1) +MT +N ]
, (44)

H =
2k[(P +QT )log(kT + k1) +MT +N ] + [Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

6(kT + k1)[(P +QT )log(kT + k(1)) +MT +N ]
.

(45)
The physical parameters such as scalar expansion θ, shear scalar σ and
deceleration parameter q are given as follow:

θ =
2k[(P +QT )log(kT + k1) +MT +N ] + [Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

2(kT + k1)[(P +QT )log(kT + k(1)) +MT +N ]
,

(46)

σ =
k[(P +QT )log(kT + k1) +MT +N ]− [Q(kT + k1)log(kT + k1) + k(P +QT ) +M(kT + k1)]

2
√
3[(P +QT )log(kT + k(1)) +MT +N ]

,

(47)
q = −1+[6{2k[(P+QT )log(kT+k1)+MT+N ]+[Q(kT+k1)log(kT+k1)+k(P+QT )

+M(kT+k1)]}×{k[(P+QT )log(kT+k1)+MT+N ]+[Q(kT+k1)log(kT+k1)+k(P+QT )
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+M(kT+k1)]}−{6[(P+QT )log(kT+k1)+MT+N ]}×{2k[Q(kT+k1)log(kT+k1)+k(P+QT )

+M(kT+k1)]+[Qk(kT+k1)log(kT+k1)+Qk(kT+k1)+k(Q+M)(kT+K1)]}]
×[2k[(P+QT )log(kT+k1)+MT+N ]+[Q(kT+k1)log(kT+k1)+k(P+QT )+M(kT+k1)]]

−2.

(48)
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Figure 3: Plot of deceleration parameter q versus T assuming the value of
constants as m = 1, K = 5, M1 = 1, N1 = 3, k = 2 and k1 = 1.5.

For the model (37) the spatial volume V is given by

V = (kT + k1)[(P +QT )log(kT + k1) +MT +N ]
1

2 . (49)

It has been seen that all the components of the rotation tensor are zero. It is
clear that V is never zero for finite values of T which means that the model
has no finite singularity. We observe that all the scale factors are monotoni-
cally increasing functions of time T and so the cosmological evolution of the
model is expanding. The spatial volume increases with time and becomes
infinite for large time. The time-decaying cosmological constant Λ assumes
a small positive value as T → ∞. This behavior of cosmological constant Λ
against cosmic time T is shown in fig.1 for different values of γ. The physical
parameters ρ and p are decreasing functions of time which ultimately tend
to zero as T → ∞. Thus, the model (37) essentially gives an empty space
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for large T . Fig.2 plots the variation of energy density ρ versus cosmic time
T for different values of γ. From this figure we observe that ρ is a decreas-
ing function of time and tends to zero as T → ∞. The scalar expansion
θ and shear scalar are also decreasing function of time which tend to zero
as T → ∞. Since σ

θ
is constant for T → ∞, the model does not approach

isotropy for large time. The deceleration parameter q is positive for finite T
and tends to 2 as T → ∞, which means the model (37) is decelerating one.
The Fig.3 depicts the behavior of the deceleration parameter with time. Ini-
tially it is an increasing function of time. After attaining the maximum value
at some instant, it decreases rapidly. It is worthwhile to mention the work of
Vishwakarma [53] where he has shown that the decelerating models are also
consistent with recent CMB observations model by WMAP, as well as, with
the high redshift supernovae Ia data including 1997 iff z = 1.755. The role of
the magnetic field is also exhibited in this model of the decelerating universe.

5. CONCLUSION

In this paper, we have presented an exact solution of Einstein’s field equa-
tions for a spatially homogeneous and anisotropic Bianchi type-III space-
time in the presence of a magnetized perfect fluid and time-decaying cos-
mological constant. In general, the model is expanding, shearing and non-
rotating. The cosmological model has no finite time singularity. All the
physical and kinematical parameters are decreasing function of time and
ultimately tend to zero for large time. The role of magnetic field is also
exhibited in this model of the decelerating universe. The energy density
and pressure are decreasing functions of time and tend to zero as T → ∞.
Therefore the model essentially gives empty space for large time. Since σ

θ

tends to a constant as T → ∞, the model does not approach isotropy for
large time.

In the derived model of the universe, the cosmological constant Λ is a de-
creasing function of time and tend to a small positive value at late time
(ie. at present epoch), which is supported by the recent result from the
observations of type Ia supernova explosion. There are several aspects of
the cosmological constant both from cosmological and field theory perspec-
tives. Presently determination of Λ has become one of the main issue of
the modern cosmology as it provides the gravity vacuum state and makes
possible to understand the mechanism which led the early universe to the
large scale structure and predicts the fate of the whole universe. Thus, the
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present model may be a useful tool for describing the early stages of the
evolution of the physical universe.
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