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ABSTRACT  11 
Aims: An analysis is presented to investigate the effects suction and thermal radiation on 
the unsteady convective flow and heat transfer in a third grade fluid over an infinite vertical 
plate. The plate is porous to allow for possible wall suction.                               
Methodology: The governing time-based coupled partial differential equations, subjected to 
their boundary conditions, are solved numerically by applying an efficient and unconditionally 
stable Crank-Nicolson finite difference scheme. Numerical calculations are carried out for 
different values of dimensionless parameters in the problem.                                        
Results: An analysis of the results obtained establishes that the flow field is appreciably 
influenced by suction and viscoelastic parameters.                                               
Conclusion: An increase in the suction parameter is observed to decrease the fluid velocity. 
The result also shows that the temperature distribution decreases with an increase in the 
thermal radiation parameter. 
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 15 
1. INTRODUCTION  16 
 17 
Non-Newtonian fluids have been a subject of great interest to researchers because of their 18 
various industrial and engineering applications. In contrast to the viscous fluids, the non-19 
Newtonian fluids cannot be described by the single constitutive relationship between the 20 
stress and the strain rate. In a non-Newtonian fluid, the relation between the shear stress 21 
and the strain rate is nonlinear and can even be time-dependent. A third grade non-22 
Newtonian fluid exhibits shear thinning/thickening effects. A third grade fluid is also capable 23 
of describing the normal stress differences that is common to second grade fluids. Shear 24 
thickening fluids are used in all wheel drive systems that utilize a viscous coupling unit for 25 
power transmission. On the other hand, an example of shear thinning fluids is paint. 26 
Fundamental areas of applications of these fluids are found in colloidal ceramics processing, 27 
plastic manufacture, enhanced oil-recovery systems, lubricants containing polymer additives, 28 
biological fluids, food processing, e.t.c. This prevalence in application is due to diverse 29 
features of such fluids in nature and industrial applications.  Generally, the mathematical 30 
problems in third grade non-Newtonian fluids are more complicated because of their high 31 
nonlinearity and higher-order nature of differential equations than those in Newtonian fluids. 32 
Despite these complexities of non-Newtonian fluids, scientists and engineers are engaged in 33 
the non-Newtonian fluid dynamics. 34 
Erdogan [1] analyzed the flow of a third grade fluid in the vicinity of a plane wall suddenly set 35 
in motion. In his observation for a short time, a strong non-Newtonian effect was present in 36 
the velocity field. However, for a long time, the velocity field became Newtonian. The 37 
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problem of peristaltic flow of MHD third order fluid in a planar channel with slip condition was 38 
investigated Hayat et al. [2]. The pumping and trapping phenomena were examined in the 39 
presence of MHD and slip effects. They derived the solutions under long wavelength and low 40 
Reynold’s number approximations. Hayat et al. [3] also gave an analytical solution to the 41 
flow of a third grade fluid bounded by two parallel porous plates using homotopy analysis 42 
method (HAM). They made a comparison with the exact numerical solution for various 43 
values of the physical parameters.  44 
Sajid and Hayat [4] also proposed a non-similar series solution to two-dimensional boundary 45 
layer flow of a third grade fluid over a stretching sheet. Sajid et al. [5] considered heat 46 
transfer characteristics in an electrically conducting third grade fluid. They employed non-47 
similar analytic solution for MHD flow and heat transfer in a third order fluid over a stretching 48 
sheet. The series solution to the unsteady boundary layer flow of a third grade fluid was 49 
developed by Abbasbandy and Hayat [6]. Siddiqui et al. [7] investigated the heat transfer 50 
flow problem of a third grade fluid between two heated parallel plates for the constant 51 
viscosity model. Three flow problems of Couette flow, plane Poiseuille flow and plane 52 
Couette-Poiseuille flow were examined by them. They employed the homotopy perturbation 53 
technique to obtain their results. Hayat et al. [8] studied exact solutions of the thin film flow 54 
problem for a third grade fluid on an inclined plane. They compared their results with those 55 
of Siddiqui et al. [7] and concluded that their solutions were valid for large values of the 56 
material parameter.  57 
Analyses of flow scenario on porous surfaces find applications in extrusion of plastic, 58 
petroleum engineering, contamination technologies, biotechnology and non-Newtonian 59 
chemical materials processing. One can refer to some useful works of Hayat and his co-60 
workers [9-15], regarding the flow and heat transfer in a third grade fluid with different 61 
geometries and diverse physical characteristics. Sahoo [16] numerically analyzed problem of 62 
Heimenz flow and heat transfer of a third grade fluid using the finite difference technique with 63 
Richardson’s extrapolation. Also, Ellahi et al. [17] presented the heat transfer analysis on the 64 
laminar flow of an incompressible third grade fluid through a porous flat channel. They 65 
provided analytical solution for temperature distribution for various values of the controlling 66 
parameters, compared the results obtained with the numerical solution and the comparison 67 
showed the fact that the accuracy was remarkable. Sahoo and Do [18] investigated the 68 
effects of slip on sheet-driven flow and heat transfer of a third grade fluid past a stretching 69 
sheet. They employed an effective second order numerical scheme of finite difference 70 
technique with Broyden’s method and addressed the issue of paucity of boundary conditions 71 
involved.  72 
Furthermore, Ellahi and Hamed [19] numerically made an interesting study for the steady 73 
non-Newtonian flows with heat transfer, MHD and nonslip effects. Nayat et al. [20] studied 74 
the flow and heat transfer of a third grade fluid past a porous vertical plate. They obtained 75 
solutions through numerical approach. Sibanda et al. [21] proposed the problem of heat 76 
transfer flow of a third grade fluid between parallel plates using the spectral homotopy 77 
analysis method. Explicit analytical expressions for the non-linear momentum equation and 78 
the energy equation were solved using the homotopy perturbation method. Recently, Hayat 79 
et al. [22] carried out an analysis for the characteristics of melting heat transfer in the 80 
boundary layer flow of third grade fluid in a region of stagnation point past a stretching sheet. 81 
They developed the series solutions by homotopy analysis method and compared their 82 
results with the previous studies. Baoku et al. [23] reported the solution to the problem of 83 
MHD partial slip flow, heat and mass transfer of a viscoelastic third grade fluid over an 84 
insulated porous plate embedded in a porous medium. They presented numerical 85 
experiments of midpoint scheme with Richardson’s extrapolation to solve the governing 86 
coupled highly nonlinear ordinary differential equations of momentum, energy and 87 
concentration showing the effects of the various physical parameters on the velocity, 88 
temperature and concentration distributions.  89 
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The influence of thermal radiation on flow and heat transfer processes is of paramount 90 
interest in physics and engineering, particularly in the design of many advanced energy 91 
conversion systems operating at high temperature (Seddeek [24]), in power generator 92 
system, cooling of nuclear reactors, high temperature plasma and in controlling heat transfer 93 
in polymer processing industry where quality of the final products largely depends on the 94 
heat controlling factors. Thermal radiation within such energy conversion systems occurs 95 
because of the emission by the hot walls and working fluid. Plumb et al. [25] studied the 96 
effect of horizontal cross-flow and radiation on natural convection from vertical heated 97 
surface in saturated porous media. Rosseland diffusion approximation was utilized for the 98 
convective flow with radiation. Hossain and Takhar [26], Takhar et al. [27], Hossain et al. [28] 99 
extensively investigated the effect of radiation on heat transfer problems.  100 
Mansour [29] also analyzed combined forced-convective flow over a flat plate immersed in 101 
porous medium of variable viscosity. Sajid and Hayat [30] examined the problem of radiation 102 
effects on the flow over an exponentially stretching sheet and solved the problem analytically 103 
using the homotopy analysis method. The numerical solution for the problem was then 104 
provided by Bidin and Nazar [31]. Anand et al. [32] critically observed radiation effects on an 105 
unsteady MHD free convective flow past a vertical porous plate in the presence of soret 106 
effect. Seethamahalakshmi et al. [33] investigated the unsteady MHD free convective flow 107 
and mass transfer near a moving vertical plate in the presence of thermal radiation. Some 108 
research works that have been carried out on this area are those of Makinde et al. [34], 109 
Srinivas and Muthuraj [35] and Singh et al. [36]. Baoku et al. [37] examined the influence of 110 
thermal radiation on a transient magnetohydrodynamic Couette flow of a high Prandtl 111 
number fluid with temperature-dependent viscosity through a porous medium. They 112 
employed an implicit finite difference scheme of Crank-Nicolson type to investigate the 113 
effects of pertinent flow parameters. 114 
The aim of this study is to investigate the suction and thermal radiation effects in a 115 
thermodynamically compatible viscoelastic third grade fluid on unsteady flow and convective 116 
heat transfer over an infinite plate which is set in motion with an oscillating temperature 117 
applied to the plate. The governing coupled nonlinear partial differential equations with 118 
sufficient initial and boundary conditions are solved by employing Crank-Nicolson finite 119 
difference scheme with modified Newton’s method. The present problem with radiative heat 120 
flux has not been considered in the scientific literature to the best knowledge of the author, 121 
despite its important applications in industry and engineering. 122 
 123 
2. MATHEMATICAL ANALYSIS  124 
 125 
Consider the transient flow and heat transfer of an incompressible fluid of a third grade past 126 
infinite porous plate. The x′ - axis is taken along the plate vertically upwards and y′ - axis is 127 
normal to it. The plate is suddenly set in motion in its own plane with a velocity U(t). An 128 
oscillating temperature is assumed to be applied on the plate in the presence of thermal 129 
radiation. It is also presumed that the plate is infinitely long. Thus, the physical variables are 130 
functions of y′  and t ′  only. Hence, from the continuity equation, the velocity field is 131 
described as:  132 

( )tyuu ′′′=′ , , 0Vv −=′      (1)          133 

where u′  and v′  are the velocities of the fluid along x′  and y′  axes respectively and 134 

00 fV  indicates suction velocity.      135 

 136 
 137 
 138 
 139 
 140 
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                                    g ′  142 

                x′                      ∞T  143 
                                    144 
         ∞= TT       u′               145 
            146 
           v= 0V                    v′  147 

                                                                y′  148 
                                         149 
Figure 1: Schematic diagram and coordinate system. 150 
 151 
2.1 Flow Analysis 152 
   153 
The constitutive equation of an incompressible third grade fluid as given by Coleman and 154 
Noll [38] is:    155 

∑
=

+−=′
3

1i
iSpIτ      (2)  156 

where 11 AS µ= , 2
12212 AAS αα +=  and ( ) ( ) 12321122313 AtrAAAAAAS βββ +++= . 157 

32121 ,,,,, βββααµ  being material constants, τ ′  the stress-tensor, p  the pressure, I  the 158 

identity tensor and nA  represents the kinematical tensors defined by, IA =0 , 159 

( )TuuA ∇+∇=1 ,  ( )T
nnnn AuAuAu

t
A ⋅∇+⋅∇+







 ∇⋅+
∂
∂=+1 , 2,1=n .     160 

where u  is the velocity and t  is the time. A detailed thermodynamic analysis of the model, 161 
represented by (2) is given by Fosdick and Rajagopal [39]. It was shown that if all the 162 
motions of the fluid are to be compatible with thermodynamics in the sense that these 163 
motions meet the Clausius-Duhem inequality and if it is assumed that the specific Helmholtz 164 
free energy is a minimum when the fluid is locally at rest, then  165 

,0≥µ  01 ≥α , 321 24µβαα ≤+ ,  021 == ββ , 03 ≥β   and 166 

( ) 1
2

13
2
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where  xyyx ′′′′ = ττ
, xzzx ′′′′ = ττ

, yzzy ′′′′ = ττ
    

174 

Inserting the stress components using (3) and velocity given by (1) in the equation of motion: 175 

jjiii
i X

Dt

Dv
,τρτρ ++−=        (5) 176 

where 
Dt

D
 denotes the material derivative and iXρ  is the external force per unit mass in 177 

thi  direction, the governing equation of free convective flow field under the physical 178 
conditions of the problem is obtained as: 179 
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 181 
2.2 Heat Transfer Analysis 182 
   183 
Neglecting viscous dissipation, the heat transport equation is obtained as:  184 

rp qT
Dt

DT
C ∇−∇Κ= 2ρ        (7) 185 

Assuming the conditions of optically thin environment that the radiative heat flux, y
q

′∂
′∂  in 186 

the energy equation takes the form Takhar, et al. [27]: ( )∞′−′=
′∂
′∂

TT
y

q 24η  where 187 
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Bδλη ; 2η , δ , λ  and B  are respectively absorption coefficient, radiation 188 

absorption coefficient, frequency and Planck’s constant, the governing equation of 189 
temperature flow field is obtained as: 190 
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In the energy equation (7), the term representing viscous and joule dissipation are assumed 192 
to be neglected as they are really very small in slow motion free convection flows. 193 
Initial and boundary conditions for the flow field are: 194 
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 where 
ρ
µν =  is the kinematic  200 

viscosity and introducing the following dimensionless variables: 201 
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Equation (6), with the similarity transformation for scaling temperature in heat transfer 203 
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Similarly, equation (8) becomes: 207 
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Using the above equations (11-12), equations (6) and (8) reduce to: 210 
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Using the dimensionless variables in (10), initial and boundary conditions now become: 214 
0,0,0:0 ===≤ θuyt ; 215 

( ) 0,:0 === ywhenttUut nta
lf ;      216 

0,cos == ywhentbθ ;       (15) 217 

0=u , 0=
∂
∂

y

u
, 0=θ ; ∞→ywhen . 218 

 219 
3. NUMERICAL SIMULATION 220 
 221 
The governing nonlinear coupled partial differential equations (13) and (14) with the initial 222 
and boundary conditions (15) are solved by employing Crank-Nicolson finite difference 223 
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scheme which has been discussed by Ganesan and Palani [40], Conte and De Boor [41], 224 
Jain [42] and Baoku et al. [37]. Therefore, the governing equations based on the unsteady 225 
state conditions are discretized using the method. The finite difference equations 226 
corresponding to these governing equations are given as: 227 
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where i  dessignates the grip point along y -direction, j  along t -direction and 2h
tr ∆= .  234 

The numerical method of Crank-Nicolson type does not restrict the value of r  to be chosen. 235 
Hence, the equations of motion and energy are reduced to system of algebraic nonlinear 236 
coupled-equations. The mesh size h  is 05.0  with time step 1.0=t . The values of ( )tyu ,   237 

and ( )ty,θ  are known at all grip points when 0=t  from the initial conditions. Modified 238 
Newton’s iterative technique is used to solve the system of nonlinear algebraic equations. 239 
Computations are carried out by moving along y -direction. After computing values 240 

corresponding to each i  at a time level, the values at the next time level are determined in 241 
similar manner. 242 
The implicit nature of Crank-Nicolson method is unconditionally stable and has local 243 

truncation error ( )[ ]22 ,htO ∆  which tends to zero as t∆  and 2h  tend to zero. There is no 244 

drawback of conditionally stability from one level to the next. The implicit method gives 245 
stable solutions and requires iterative procedure which was done at step forward in time 246 
because this problem is an initial-boundary value problem with a finite number of spatial grip 247 
points. Though, the corresponding difference equations do not automatically guarantee the 248 
convergence of the mesh 0→h  . To achieve maximum numerical efficiency, the 249 
tridiagonal procedure was used to solve the two point conditions for (14) and four point 250 
conditions for (13). The above procedure was transformed into Maple code as described by 251 
Heck [43]. The convergence of the process was quite satisfactory and the numerical stability 252 
of the method was guaranteed by the implicit nature of the scheme. Hence, the scheme is 253 
consistent; stability and consistency ensure convergence. 254 
 255 
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4. DISCUSSION OF RESULTS  256 
 257 
The investigation focuses on the flow fields when a vertically upward plate suddenly starts 258 
moving with a velocity in its own plane and temperature field, assumed to be oscillating, is 259 
applied to the plate in the presence of suction and thermal radiation. The governing 260 
equations of the flow and temperature fields are solved using Crank-Nicolson implicit finite 261 
difference scheme with modified Newton’s method and approximate solutions are obtained 262 
for the velocity and temperature profiles. The effects of the pertinent parameters on the flow 263 
and temperature fields are analyzed and discussed with the help of velocity profiles (Figures 264 
2 - 6) and temperature profiles (Figures 7 - 9).  265 
 266 
4.1 Velocity Profiles  267 
 268 
The effects of various parameters on the velocity field are investigated through simulations 269 
using the method above and results are shown as graphs for two major cases; 8.0=n , i.e. 270 
when the plate starts moving with variable accceleration and 1=n , i.e. when the plate starts 271 
with a constant acceleration. Figure 2 analyzes the influence of suction parameter ω  for 272 
cases 8.0=n  and 1=n . It is observed that an increase in the suction parameter ω  273 
decreases the fluid velocity at any point of the fluid, and higher velocity profile is attained 274 
when 8.0=n . This implies that suction which is the removal of fluid from the domain via the 275 
porous plate can be used to control the fluid dynamics. Thus, suction enhances adherence 276 
of the fluid to the plate which in turn retards the flow. This observation is in conformity with 277 
that of Beg et al. [44]. Figures 3 and 4 depict the effect of viscoelastic parameters α  and β  278 

on the velocity field. It is observed that as a growing viscoelastic parameter α  increases, 279 
the velocity field increases. The influence of β  on the velocity profile is noticeable when 280 

there is small increment in time interval. An increase in β  corresponds to a slight growing in 281 

the velocity profiles for both cases of constant and variable accelerations. Hence, the 282 
viscoelastic parameters are seen to boost the velocities to the plate surface with suction 283 
present. This observation agrees with that reported by Beg et al. [44]. 284 
As the free convection current exists by virtue of temperature difference ( )∞′−′ TT , the 285 

Grashof number Gr  can realistically take any real number when
2

0
π≤≤ b . 0fGr  286 

corresponds to cooling of the plate and 0pGr  corresponds to heating of the plate due to 287 
free convection current. Therefore, both positive and negative values have been chosen for 288 
Grashof number. An increase in Grashof number Gr  increases the fluid velocity near the 289 
plate when the plate is being heated for both 8.0=n  and 1=n  in Figure 5. However, when 290 
the plate is being cooled, the fluid velocity decreases as the Grashof number increases.   291 
Also, Figure 6 shows that an increase in Prandtl number Pr  increases the fluid velocity in 292 
both cases of constant and variable accelerations. It is worth mentioning that these findings 293 
on Gr  and Pr  are in consonant with those of Sahoo [45]. 294 
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 295 
Figure 2: Effect of ω on velocity field when 8.0=n  and 1=n  with 1=α , 1=β , 296 

10=Gr , 10Pr = . 297 
 298 

 299 
Figure 3: Effect of α on velocity field when 8.0=n  and 1=n  with 5=ω , 1=β , 300 

10=Gr , 10Pr = .# 301 
 302 
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 303 
Figure 4: Effect of β  on velocity field when 8.0=n  and 1=n  with 304 

1=α , 5=ω , 10=Gr , 10Pr = . 305 
 306 

 307 
Figure 5: Effect of Gr on velocity field when 8.0=n  and 1=n  with 1=α , 1=β , 308 

10=ω , 10Pr = . 309 
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 310 

    311 
Figure 6: Effect of Pr on velocity field when 8.0=n  and 1=n  with 1=α , 1=β , 312 

10=Gr , 5=ω . 313 
 314 
4.2 Temperature Fields  315 
 316 
The temperature of the flow field suffers a substantial change with the variation of the flow 317 
parameters such as suction parameter ω , Prandtl number Pr  and thermal radiation 318 

parameter dR . These variations are shown in Figures 7 – 9. Figure 7 expresses the 319 

influence of suction parameter ω  on the temperature field. A growing ω  is found to 320 
decrease the temperature of the flow field at all points in the domain. Similarly, it is observed 321 
in Figure 8 that the effect of increasing Pr  reduces the temperature field. This observation 322 
on Pr  quite conforms to that reported by Sahoo [45]. Lastly, it is evident from Figure 9 that 323 
at lower value of dR , there is little or no influence of dR  on the temperature profile whereas 324 

at higher value of dR , the effect of dR  on temperature distribution is noticeable. Hence, the 325 

consequence of increasing dR  has the influence of decreasing the temperature of the flow 326 

field. 327 
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 328 
Figure 7: Effect of ω on temperature field when 5=dR  and 10Pr = .  329 

 330 

 331 
Figure 8: Effect of Pr on temperature field when 5=dR  and 5=ω .  332 

 333 
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 334 
Figure 9: Effect of dR on temperature field when 5=ω  and 10Pr = . 335 

 336 
5. CONCLUSIONS 337 
 338 
In this study, the influence of suction and thermal radiation is investigated on the transient 339 
flow and heat transfer of a third grade viscoelastic fluid through a vertical porous plate. An 340 
implicit finite difference numerical scheme of Crank-Nicolson type is employed to discretize 341 
the system of coupled partial diffential equations and modified Newton’s method is used to 342 
solve the system of algebraic nonlinear equations obtained after discretization. The above 343 
scheme is transformed into the Maple code to simulate the solutions of the problem. This 344 
solution procedure is valid for all values of viscoelastic parameters unlike perturbation and 345 
power series methods that are valid for small values of viscoelastic parameters. 346 
Therefore, results of physical interest on the velocity and temperature distribution of the flow 347 
field are summarized below: 348 

� The fluid velocity increases when the value of the second grade viscoelastic 349 
parameter α  increases. Also, it increases with an increase in the third grade 350 
viscoelastic parameter β  for small increment in the time interval.  351 

� The suction parameter ω  has the influence of reducing the velocity and 352 
temperature field. 353 

� As the Prandtl number increases, it also increases the velocity field but it reduces 354 
the temperature distribution of the flow field. 355 
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� The fluid velocity increases when the plate is being heated and decreases when the 356 
plate is being cooled with higher velocity profile noticeable when the plate starts 357 
moving with variable acceleration. 358 

� The effect of increasing the thermal radiation parameter dR  decreases the 359 

temperature distribution of the flow field. 360 
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 Nomenclature: 498 
 499 
Alphabetical Symbols 500 

321 ,, AAA  Rivlin-Ericksen tensor   501 

B   Planck’s constant 502 

pC   specific heat at constant pressure 503 

Gr   thermal Grashof number 504 
g ′   acceleration due to gravity 505 

h   step size 506 

 507 
I   identity tensor 508 
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ji,         grip points along y-direction and t-direction 509 

ban ,,   constants 510 

Pr   Prandtl number 511 
p   scalar pressure 512 
r   convergent term 513 
T ′   ambient temperature 514 

wT ′   temperature at the wall/plate 515 

∞′T   free stream concentration 516 

tt ,′   local time, dimensionless time  517 

vu ′′,      velocity components in x and y directions 518 

u   fluid velocity  519 
)(tU   initial moving velocity 520 

0V   suction velocity 521 

yx,   coordinate axes 522 

iX   external force in ith direction 523 

Greek Symbols 524 
α   dimensionless second grade viscoelastic parameter 525 

21 ,αα   second grade viscoelastic material constant 526 

β     dimensionless third grade viscoelastic parameter 527 

321 ,, βββ  third grade material constant 528 

Tβ      volumetric coefficient of thermal  expansion 529 

θ   dimensionless temperature 530 
2η   absorption coefficient  531 

λ   frequency 532 
δ   radiation absorption coefficient 533 
κ   thermal conductivity  534 
µ   dynamic viscosity 535 

ν   kinematic viscosity 536 
ω   suction parameter 537 
ρ   fluid density  538 

τ ′   stress tensor 539 
Symbols 540 
∇   gradient operator 541 

Dt

D
  material derivative 542 

t∂
∂

  partial time derivative 543 

Subcripts 544 
w   surface condition 545 
p   constant pressure 546 
∞   free stream condition 547 
 548 


