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ABSTRACT

The first measure one usually comes into contact with in undergraduate

mathematical studies is the Lebesgue measure and seeing how it is ap-

plied to the Lebesgue integral to extend considerably the Riemann inte-

gral, it doesn’t take very much else to arouse one’s interest in the study

of measures and their construction with the hope/intent of eliciting their

usefulness and how they are applied to other areas of mathematics. The

Carathéodory extension theorem and the Carathéodory-Hahn theorem which

are invoked subsequently in the construction of some measures are stated

without proof. A large class of measures exist and this paper illustrates the

construction of some of these measures including the Radon measure, the

Hausdorff measure, the Lebesgue-Stieltjes measure, the Lebesgue measure

in Rn and Product measures.
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INTRODUCTION

Like most concepts in mathematics, measure has a formal rigorous def-

inition, but according to wikipedia; a measure on a set can be thought of

as a systematic way to assign a number to each suitable subset of that

set, intuitively interpreted as its size. In this sense, a measure is a gen-

eralization of the concepts of length, area, and volume. A particularly

important example is the Lebesgue measure on a Euclidean space, which

assigns the conventional length, area, and volume of Euclidean geometry

to suitable subsets of the n-dimensional Euclidean space Rn. For instance,

the Lebesgue measure of the interval [0, 1] in R is its length, specifically 1.

Generally, a measure is a function that assigns a non-negative real num-

ber or +∞ to (certain) subsets of a set X. It must assign 0 to the empty set

and be countably additive: the measure of a “large” subset that can be

decomposed into a finite or countable number of “smaller” disjoint sub-

sets, is the sum of the measures of the “smaller” subsets. In general, if

one wants to associate a consistent size to each subset of a given set while

satisfying the other axioms of a measure, one only finds trivial examples

like the counting measure, which defines the measure of a set, S, simply

as the number of elements in S. This problem was resolved by defining

measure only on a sub-collection of all subsets, called measurable subsets,

which are required to form a σ-algebra. This means that countable unions,

countable intersections and complements of measurable subsets are mea-

surable.

All ordinary concepts of length or area or volume apply only to reason-

ably regular sets. Modern measure theory is remarkably powerful in that
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an extraordinary variety of sets are regular enough to be measured; but

there are still some limitations, and when studying any measure, a proper

understanding of the class of sets which it measures is indispensable [4].

This leads us to the existence of non-measurable sets. Generally speaking,

non-measurable sets are sets which fail to be measurable with respect to a

translation-invariant measure.

Background

[3] gives an outline of the background of measure theory, which spans

from the early notion of measure introduced by Italian Guiseppe Peano in

1883, to the Austrian Johann Radon’s 1913 Habilitation work where he be-

gan the study of abstract measures and integrals more general than those

of Lebesgue in Rn. Generally, measure theory was developed in successive

stages during the late 19th and early 20th centuries by Émile Borel, Henri

Lebesgue, Johann Radon, Camille Jordan and Maurice Fréchet, among

others.

The main applications of measures are in the foundations of the Lebesgue

integral, in Andrey Kolmogorov’s axiomatization of probability theory

and in ergodic theory. The general theory of integration is a significant

advancement from the Riemannian integration known from calculus. Ac-

cording to [3], although many applications in natural sciences triggered

the development of general integration and measure theory, the theory of

probability has become the primary client of abstract measure even prior

to integration.

In integration theory, specifying a measure allows one to define inte-
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grals on spaces more general than subsets of the Euclidean space. Prob-

ability theory considers measures that assign to the whole set the size 1,

and considers measurable subsets to be events whose probability is given

by the measure. Ergodic theory considers measures that are invariant un-

der, or arise naturally from a dynamical system [15]. Toward the end of

the nineteenth century, it became clear to many mathematicians that the

Riemann integral (about which one learns in calculus classes) should be

replaced by some other type of integral, more general and more flexible,

better suited for dealing with limit processes [11].

Notable among the shortcomings of the Riemann integral being the fact

that the point-wise limit of a sequence of Riemann integrable functions is

not necessarily Riemann integrable an example being the Dirichlet func-

tion over [0, 1]. An attempt to overcome these limitations resulted in the

creation of the Lebesgue integral, which is based on the Lebesgue measure.

Hence any set or function that is Lebesgue measurable is also Lebesgue in-

tegrable. Many sets and functions are measurable, for example, the Cantor

set and the characteristic function. The Cantor set, though being a per-

fect, totally disconnected set, can have a continuous function defined on

it, but the Riemann integral of such a function cannot be found. Also, the

characteristic function is not continuous and also not Riemann integrable.

Hence in the theory of Lebesgue integral, measurability replaces the need

for complete continuity [2], [6], [8].
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PREREQUISITES AND METHODOLOGY

We note the following definitions and theorems.

Definition: Let X be a set. A collection M of subsets of X is called a

σ-algebra in X if these three conditions are satisfied.

1. X ∈M.

2. X − A ∈M for every A ∈M.

3.
⋃∞
n=1An ∈ M for every countable collection {An : n = 1, 2, 3, . . .}

of elements inM [2]

A non-empty collection S of subsets of a set X is called a semi-ring pro-

vided whenever A and B belong to S, then A ∩ B also belongs to S and

there is a finite disjoint collection {Ck}nk=1 of sets in S for which,

A−B =
⋃n
k=1Ck [4].

By a measurable space, we mean a couple (X,M) consisting of a set X

and a σ-algebraM of subsets of X. A subset E of X is called measurable or

measurable with respect toM provided E belongs toM [3].

A measure µ on a measurable space (X,M), is an extended real-valued

non-negative set function; µ :M→ [0,∞] for which µ(∅) = 0, and which

is countably additive in the sense that for any countable disjoint collection

{Ek}∞k=1 of measurable sets,
µ

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

µ(Ek). [1]

By a measure space (X,M, µ), we mean a measurable space (X,M)

together with a measure µ defined onM [8].

Premeasure: A finitely additive, countably monotone set function s, de-

fined on a ring O or algebra A is called a premeasure on O or A and

s(∅) = 0 [3].
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Outer measure: A set function µ∗ : 2X → [0,∞] is called an outer measure

provided µ∗(∅) = 0 and µ∗ is countably monotone [8].

Theorem 1: Let µ∗ be an outer measure on 2X . Then the collection M

of sets that are measurable with respect to µ∗ is a σ-algebra. If µ is the

restriction of µ∗ toM, then (X,M, µ) is a complete measure space [9].

Carathéodory’s definition: For an outer measure µ∗ : 2X → [0,∞], we

call a subset E of X measurable (with respect to µ∗ or µ∗-measurable) pro-

vided for every subset A of X, µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) [1], [4].

An outer measure m∗ on X is called a metric outer measure or an outer

measure in the sense of Carathéodory (Carathéodory outer measure) if,

m∗(A1 ∪ A2) = m∗(A1) +m∗(A2) whenever d(A1, A2) > 0 [13].

Carathéodory’s Extension Theorem: Let µ be a measure on an algebra

A and µ∗ the outer measure induced by µ. Then the restriction µ of µ∗ to

the µ∗-measurable sets is an extension of µ to a σ-algebra containingA. If µ

is σ-finite, then µ is the only measure on the smallest σ-algebra containing

Awhich is an extension of µ [6], [9].

The Carathéodory-Hahn Theorem: Let µ : S → [0,∞] be a premeasure

on a semiring S of subsets of X. Then the Carathéodory measure µ induced

by µ is an extension of µ. Furthermore, if µ is σ-finite, then so is µ and µ is

the unique measure on the σ-algebra of µ∗-measurable sets that extends µ

[8].
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RESULTS

HAUSDORFF MEASURE

The Hausdorff measure is an example of measures constructed from a

Carathéodory outer measure known as the Hausdorff outer measure.

Choose α > 0, and let A be any subset of Rn. Given ε > 0, let

H(ε)
α (A) = inf

∑
k

δ(Ak)
α, (2)

where δ(Ak) denotes the diameter of Ak and the infimum is taken over all

countable collections {Ak} such that A ⊆
⋃
Ak and δ(Ak) < ε for all k [13].

Let Hα(A) = lim
ε→0

H(ε)
α (A). (2b)

Theorem: For α > 0, Hα is a Carathéodory outer measure on Rn [13].

By the above theorem, Hα as defined by equation (2b) is a Carathéodory

outer measure and thus by theorem 1, the collection M of sets that are

measurable with respect to Hα is a σ-algebra. The restriction of Hα toM

is referred to as the Hausdorff measure.

PRODUCT MEASURE

Let (X,A, µ) and (Y,B, v) be two reference σ-finite measure spaces. We

consider the Cartesian product X × Y of X and Y . If A ⊆ X and B ⊆ Y ,

we call A × B a rectangle. If in addition A ∈ A and B ∈ B, then we call

A×B a measurable rectangle [1].
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Lemma 1: Let {Ak × Bk}∞k=1 be a countable disjoint collection of measur-

able rectangles whose union is also a measurable rectangle A × B. Then,

µ(A) · v(B) =
∞∑
k=1

µ(Ak)× v(Bk). [8]

Proposition 1: Let R be the collection of measurable rectangles in X × Y

and for a measurable rectangle A×B, define m(A×B) = µ(A) · v(B).

ThenR is a semiring and m : R → [0,∞] is a premeasure [1], [8].

Lemma 1 is primarily used in the proof of Proposition 1.

Proposition 1 allows us to invoke the Carathéodory-Hahn theorem in or-

der to make the following definition of product measures.

Definition: Let (X,A, µ) and (Y,B, v) be measure spaces. R the collection

of measurable rectangles contained in X × Y and m the premeasure de-

fined onR by m(A×B) = µ(A) · v(B) for A×B ∈ R[1], [8].

By the product measure m = µ × v, we mean the Carathéodory extension

of the premeasure m : R → [0,∞] defined on the σ-algebra of (µ × v)∗-

measurable subsets of X × Y as stipulated in the Carathéodory-Hahn the-

orem.

RADON MEASURE

Definition: Let (X, T ) be a topological space. We call a measure µ on the

Borel σ-algebra B(X) a Borel measure provided every compact subset of X

has finite measure. A Borel measure µ is called a Radon measure provided,

(i) for each Borel subset E of X, µ(E) = inf{µ(U) : U a neighborhood of E}

(Outer regularity),
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(ii) for each open subset O of X, µ(O) = sup{µ(K): K a compact subset of

O}(Inner Regularity). [8]

To arrive at the definition above, a natural place to begin is to consider

premeasures µ : T → [0,∞] defined on the topology T and consider the

Carathéodory outer measure induced by µ.

Lemma 2: Let (X, T ) be a topological space, µ : T → [0,∞] a premeasure,

µ∗ the outer measure induced by µ such that for any subsetE of X, µ∗(E) =

inf{µ(U) : U an open neighborhood of E}. (3)

Then, E is µ∗-measurable if, and only if,

µ∗(O) ≥ µ∗(O ∩ E) + µ∗(O − E) (4)

for each open set O for which µ(O) <∞ [8].

Proposition 2: Let (X, T ) be a topological space, µ : T → [0,∞] a premea-

sure. Assume that for each open set O for which µ(O) <∞,

µ(O) = sup{µ(U) : U open and U ⊂ O} (5)

Then every open set is µ∗-measurable and the measure

µ∗ : B(X)→ [0,∞] is an extension of µ [8].

Lemma 2 defines a premeasure µ on T , and proceeds to to define the

outer measure µ∗ on X via µ in a form that endows µ∗ with the property of

outer regularity.

Proposition 2 asserts that the restriction of µ∗ as defined by Lemma 3

to the Borel σ-algebra is a measure and an extension of µ, and Proposition

2 also endows all open sets with inner regularity.

Thus, µ∗ : B(X)→ [0,∞] is a Radon measure.
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LEBESGUE MEASURE ON Rn

We call a point in Rn an integral point provided each of its coordinates is

an integer and for a bounded interval I in Rn, we define its integral count,

µintegral(I), to be the number of integral points in I [8].

Lemma 3: For each ε > 0, define the ε-dilation, Tε : Rn → Rn by Tε(x) =

ε · x. Then for each bounded interval I in Rn,

lim
ε→∞

µintegral(Tε(I))

εn
= vol(I).

Proposition 3: The set function volume, vol : I → [0,∞), is a premeasure

on the semi-ring I of bounded intervals in Rn [8].

Outline of Proof for Proposition 3:

• We first show that I is a semi-ring.

• Next, we show that vol is a premeasure on I; monotonicity follows

from the monotonicity of the integral count.

• Finite additivity of vol follows from the finite additivity of the inte-

gral count.

The outer measure µ∗n induced by the premeasure, volume, on the semi-

ring of bounded intervals in Rn is called the Lebesgue outer measure on

Rn.

The collection of µ∗n-measurable sets is denoted by Ln and called the

Lebesgue measurable sets. The restriction of µ∗n toLn is called the Lebesgue

measure on Rn or n-dimensional Lebesgue measure and denoted by µn.

The existence of µn is guaranteed by the Carathéodory-Hahn theorem.
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LEBESGUE-STIELTJES MEASURE

To construct the Lebesgue-Stieltjes outer measure, we consider any fixed

function f which is finite and monotonically increasing on (−∞,+∞).

• For each half-open finite interval of the form (a, b], let

m(a, b] = mf ((a, b]) = f(b)− f(a).

• If A is a non-empty subset of R, let

m∗(A) = m∗f (A) = inf
∞∑
k=1

m(ak, bk], (1)

where the infimum is taken over all countable collections {(ak, bk]}

such that A ⊆
⋃
(ak, bk] . Further, define m∗(∅) = 0 [13].

Theorem:

m∗ is a Carathéodory outer measure on R [13].

Outline of Proof:

• We first show that m∗ ≥ 0 and m∗(∅) = 0.

• Next, we show monotonicity, that is, if A1 ⊆ A2, then m∗(A1) ≤

m∗(A2).

• We show that m∗ is sub-additive, that is, if {Aj}∞j=1 is a collection of

non-empty subsets of R and such that A =
⋃
Aj , then

A ⊆
⋃
k,j(a

j
k, b

j
k], and m∗(A) ≤

∑
m∗(Aj).

• Finally, we show that m∗ is a Carathéodory outer measure, that is, if

d(A1, A2) > 0, then, m∗(A1) +m∗(A2) = m∗(A1 ∪ A2)

The theorem above asserts that, m∗ as defined by equation (1) is an

outer measure, and thus by Theorem 1, there is an associated σ-algebra,
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which is the collection of all subsets which are measurable with respect to

m∗.

m∗f is called the Lebesgue-Stieltjes outer measure corresponding to f ,

and its restriction to those sets which arem∗f -measurable is called the Lebesgue-

Stieltjes measure.

CONCLUSION

We used the Carathéodory-Hahn theorem, Carathéodory’s Extension

theorem and Theorem 1 in most of our constructions. Any such construc-

tion yields a complete measure space.

There are other ways of constructing measures. For example; a mea-

sure defined on the Borel σ-algebra, B, is called a Borel measure, that is,

if we restrict, say, the Lebesgue measure, m, on R to the Borel σ-algebra,

B(R), we get a measure space (R,B(R),m). But this measure space lacks

the property of completeness.
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