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1. Introduction

Spin glasses are random magnetic alloys resulting from frustration which is believed to be a

consequence of quenched disorder (the randomness in the interactions).This state exists in the

alloy of diluted magnetic atom and non magnetic metal such that the interaction between spins at

each site is RKKY type of interaction which is an interaction due to conduction electrons. But

such types of interactions decay with the distance between spins becoming longer and longer.

Ground state of spin glass at low temperature is a frozen disordered state instead of an ordered

one (the magnetization is zero). This implies that there is no long-range order in spin glasses.

This is the result of competition in interaction between ferromagnetism and aniferromagnetism.

According to previous studies of spin glass state, quenched disorder means that the interactions

between spins and/or their locations have constrained disorder. Because of the conflict in

the interaction between spins, the spin glass phase is an example of spontaneous cooperative

freezing of the random spin orientations [1].In particular, when the coupling between spins are
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ferromagnetic for some bonds and antiferromagnetic for the others, then the spin alignment

cannot be uniform in space, unlike the ferromagnetic system, even at low temperatures [2-5].

Under such a situation the spins get randomly frozen in time. This is the phenomenon of the spin

glass phase.

2. The Model

We assume that the Edwards-Anderson spin glass model [2-4], which is based on a set of

N Ising spins = ±1, the governing dynamics will be expressed as

= ∑( ) . (2.1)

Where ( ) stands for a sum over nearest neighbors.

The exchange integral or bonds are independent random variables drawn from a given

distribution with mean zero and variance one. This implies that each interaction coupling is

expected to be distributed independently according to the probability distribution (p( )). We can

use the bimodal type of bond distribution p( ) i.e.

= − + (1 − ) + . (2.2)

In this equation may be either J (> 0) (with probability p) or -J(with probability 1-p)[5].

Here the spin variables are assumed to be of the Ising type ( = ±1) and fluctuate

thermodynamically.

We focus on a generalization of the Edwards-Anderson Ising spin glass[6-7] model, i.e. the

bonds take only two values = ±1, with probability of occurrence of this is equal and the

probability of existence of interaction coupling depends on the distance between the two spins. A

theoretical understanding of the spin-glass phase is relaying on the value of the overlap order

parameter [8]. The spins that exist in one replica and those of the other are not affected

thermodynamically each other. Nonetheless, we can expect that the spin configurations of the

two replicas are similar to each other at low temperatures, if there is a single thermodynamic

state into which the system is frozen else the overlap can take different values (including zero) if
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many different states are present. Thus, we define the order parameter as the hamming distance

of the spin configurations of the replicas [8]. For a given instance J of the quenched disorder the

overlap is defined as:

= ∑ 〈 ( )〉 〈 ( )〉 (2.4)

Here 〈… 〉 , stands for thermal average (time average for Monte Carlo Calculations) in the

state , and = is the number of lattice sites. Where L is linear lattice size and d is

dimension of the system. One may regard that the two identical copies represent the same

system at two moments in time with infinite interval [9]. Spin glasses present a great challenge

for numerical simulations. The effects of frustration and disorder lead to slow dynamics, with

roughly logarithmic time dependence, so simulation must be run for many time steps.

Furthermore, quenched in disorder gives rise to large sample to sample fluctuations making an

average over many samples necessary to obtain accurate results.

3. Distance dependent interaction coupling

Since such a kind of spin interaction is strongly dependent on distance between spins at the sites

and , it is permissible to consider only spins at the nearest neighbors only. But in order to

show a phase transition we explore distance dependent interaction coupling when couplings [10]

between far away spins are permitted. Therefore we considered the following Hamiltonian for

the Ising spins: = ∑( ) . (3.1)

The exchange integral is a quenched random variable whose probability of being non- zero

decays with distance between two spin sites[11] This implies that, if we consider two spins at the

sites and , and then the distance between them is = − . The probability of

the existence of coupling between them can be given as( ) ∝ (3.2)

for ≫ 1. The probability of existence of the none zero interaction coupling is equal and the

distribution of interaction coupling is Gaussian type with zero mean and variance ( ∝ )[12-

14]. Such a kind of method leads us to study long and short range regimes by changing the
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exponent ( )[11]. The problem is that each spin interacts with all the others and numerical

simulations are very computer time demanding, and it is hard to get clear experimental evidence

supporting a specific spin-glass theory [12-13]. We, therefore, introduce a diluted version of the

model, where the mean coordination number is fixed [15] i.e. for this work we use the

coordination number ( = 6). The critical behavior is mean-field like ( − 2 = 0) with

critical exponents = and = − 2 − , according to finite size scaling approach. Where

is the exponent of correlation length and is the exponent of spin glass susceptibility.  Here= = 2.67 is found in the renormalization [10] approach from the dimension of the coupling

constant.

4. Computational technique

The general idea of parallel tempering is not limited to exchanges or swaps between systems at

different temperatures. Investigators have developed a number of methods based on swapping

alternative parameters in order to minimize barriers that inhibit correct sampling. Additionally,

parallel tempering can be combined with a large number of alternative sampling methods, and its

use has led to a great improvement in the sampling of many existing computational methods.

We have used replica exchange (parallel tempering)[17-21] Monte Carlo scheme because spin

glass system has many local minima separated by entropic barriers at its ground state [22-23].

Just to implement a parallel tempering algorithm[10] one needs to make M replicas of the

system (ensemble) to be analyzed, each of which characterized by different temperatures> > ⋯ > . The main idea of this method is to simulate independently the standard

Monte Carlo[24] for each copy, all of them at different temperatures and to swap periodically the

configurations of two randomly chosen temperatures [25-26]so that as to reduce the relaxation

time of the simulation at each valley. We used the following details for the simulation:-

Rho( ) Lattice size(L) No. of
samples(NJ)

No. of
Monte
Carlo steps
(MCS)

No of
temperatures(M)

∆
(Change
in T)

3 30, 40 200(for
small L)
&100 (for
large L)

500000 10(for small
L)&20(for large
L)

0.2&0.1

4 30,40 200(for
small L)

1000000 10(for small
L)&20(for large

0.2&0.1
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&100 (for
large L)

L)

Table 1 Parameters that we used for the simulation.

5. Results and Discussion

The plots show the existence of phase transition from paramagnetic to spin glass state for larger
system sizes. Basically, in this case the researches considered overlap order parameter in order to
identify spin glass phase. Temperature  varies with the concentration i.e. when  concentrationdecreases, the transition temperature also decrease just like that of the experimental findings  30years ago by Mydosh and Canella. The site density is directly proportional to the concentration ofmagnetic ions. It is easy to vary the concentration of spins and to find a spin density in zero molecular
field which is independent of the composition.

Fig.1 The plot of Probability distribution of overlap parameter ( P(q)) versus order parameter (q)

for different temperatures T =1.0; 1.4; 1.8; 2.2; 2.8 and = 3.0, = 30. This plot illustrates how

pure paramagnetic phase at high temperature is translated to spin glass phase at low temperature.
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Fig.2: This figure explains the probability distribution of order parameter verses overlap

parameter just like the above figure but for L =30, = 4.0, and = 1.5,1.6,1.8,2.2,2.8. In

this case, the figure shows how the peaks of p(q) depend on the value of and temperature.

Fig.3: Schematic representation of p(q) versus for = 40, = 4.0, = 1.0,1.1,1.3,1.7,1.9. This

figure helps for comparison i.e. the effect of rho ( ) on the phase transition temperature and the

role of lattice on the existence of overlap order  parameter.

6. Conclusion
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Some of the physical quantities that we used diverge at the critical point. In order to avoid this
complication in the simulation time we introduced finite size scaling approach. We have
simulated different systems with different geometrical organization of random interactions. For
each system we have simulated two replicas in order to study the overlap order parameter. We
have taken a simulation for the probability of overlap distribution function for = 3, 4. In both
cases we found evidence for the existence of a phase transition from the paramagnetic to the spin
glass phase. Specially for = 4, double peaked distributions, typical of the spin glass phase are
displayed at low T for small sizes. These results are in agreement with previous studies.
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