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Zitterbewegung is the quiver motion with frequency 
  
ω =

2mc2

h
 and 

Compton-wavelength amplitude 
  
λ =

h
mc

 discovered by Schroedinger in 

his 1930 solution of the time-dependent Dirac equation for a free 

electron.  The origin of Zitterbewegung is the interference between 

positive-energy and negative-energy states.  Zitterbewegung is 

predicted to exist for both free and bound electrons provided one 

discards Dirac’s hypothesis, known as hole theory, whereby positive-

energy electrons are forbidden from occupying negative-energy states 

such that Zitterbewegung is suppressed.  The positive-energy spectra 

are identical whether one uses Dirac’s hypothesis, in which 

Zitterbewegung is suppressed, or whether one uses the solution in 

which electrons are not restricted from simultaneously occupying both 

positive-energy and negative-energy states such that Zitterbewegung is 

not suppressed.  Thus both the restricted and unrestricted solutions are 

confirmed by spectroscopic experimental observation such that new 

experiments are motivated to discriminate between the restricted and 

unrestricted solutions.  Restricted Dirac theory is also validated by 

electron-positron pair creation and annihilation experiments.  In this 

paper we look for pair states in the negative-energy region of the Dirac 

spectrum in order to understand if the positive-energy negative-energy 

interference solution, which correctly predicts the positive-energy 

spectrum, is also correct in the description of pair creation and 

annihilation. 

 

 

 

 

 

 



I.  Introduction and general considerations 

 

     A considerable literature exists on different electrodynamical theories proposed  

 

for the calculation of the radiative properties of matter, for which, in order better to  

 

orient the reader to the subject matter of this paper, we give a brief review as  

 

follows.  The quantization of the classical electromagnetic field, which founded  

 

quantum electrodynamics (QED), was carried out by Dirac in 1927 [1].  A review of  

 

the quantized radiation field (QRF), as it is called, and its use in the calculation of  

 

radiative spontaneous emission and the Lamb shift is given by Louisell [2].  The QRF  

 

may be criticized in the sense that its distribution of frequencies is unrelated to the  

 

electron’s own distribution of frequencies and is therefore unbounded such that its  

 

use in the radiation-matter interaction Hamiltonian for the electron leads to an  

 

energy shift – Lamb shift – which diverges linearly in the photon frequency, ω .  As  

 

explained in [2] and elsewhere the linear divergence is interpreted as a permanent  

 

radiant property of a free electron such that, when it is included or “added back” to  

 

the calculation for a bound electron which is “bare” or undressed by the radiation  

 

field in the original calculation, the linear divergence is exactly canceled.  This  

 

procedure is known as mass renormalization because it contributes a radiative   

 

component to the electron’s material mass.  Although a logarithmic divergence in  

 

the photon frequency remains, use of a suitable cut off leads to results which agree  

 

quantitatively with experiment [2-3].  Notice that the linearly-divergent contribu- 

 

tion to the mass of a free electron appears to be irremovable. 

                                                                     

     In order to gain a more satisfactory physical picture of the radiant aspect of the  
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electron, pioneers have presented formulations – the neoclassical theory of Edwin  

 

Jaynes and coworkers [4] and self-field quantum electrodynamics of Asim Barut   

 

and coworkers [5] – in which the electromagnetic vector potential is calculated  

 

from the electron’s current.  These theories were problematic either in a  

 

quantitative sense in Jaynes’ case or in the sense of possible flaws in the use of   

 

Schroedinger theory to calculate the electron’s current in Barut’s case [6-7]. 

 

     The quantization condition for the photon and electron [1-2] requires that  

 

the initial state of  an atom comprises an electron in an excited state with zero  

 

photons present in the radiation field and that the final state of the atom comprises  

 

an electron in an unexcited state with one photon present in the radiation field.  The  

 

radiative emission rate converges because it vanishes by destructive interference of  

 

the out-of-phase electron wave functions of the initial and final states unless  

 

  
hω = ∆E fi , where ∆E fi is the energy gap between the two states and   hω  is the  

 

photon energy.  On the other hand emission of a photon from the ground state  

 

means that the photon must be re-absorbed by the same state leading to a closed  

 

photon loop in which the electron energy shift diverges as ω .  Dirac’s relativistic- 

 

electron theory [8] leads to further complications in interpretation since a set of  

 

negative-energy states lies below the nominal ground state such that radiative  

 

spontaneous emission from the ground state to a negative-energy state lying below  

 

it would occur, which is unobserved in nature.  Dirac’s hole interpretation that the  

 

negative-energy states are filled with electrons in which an absent electron or hole  

 

represents a positron avoids the unphysical prediction since a positive-energy  
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electron is forbidden by Pauli’s exclusion principle from falling into a negative- 

 

energy state.  But Dirac’s hole theory also rules out the existence of Zitterbewegung,  

 

which arises from the interference between positive-energy and negative-energy  

 

states in observables in which an electron simultaneously occupies a superposition  

 

of positive-energy and negative-energy states.  The recent observation of  

 

Zitterbewegung in a simulated electron experiment using a trapped-ion [9] suggests  

 

that hole theory, for all its success in positron physics, should be reexamined from  

 

the point of view of its reconciliation with Zitterbewegung.   

 

     What is the ground state?  A body of theory exists known as 4-space Dirac theory  

 

[10-11], whose principal motivation is the clear avoidance of a preferred frame of  

 

reference.  In 4-space Dirac theory the positive-energy spectrum of states is  

 

identical to that of standard Dirac theory but the wave function comprises  

 

contributions from both electrons and positrons, which one may surmise is just a  

 

bound-state form of  Zitterbewegung, although not identified as such likely owing to  

 

the fact that the original prediction of Zitterbewegung [12] was made for a free  

 

electron.  Following Barut and coworkers [5,13] and others, it is necessary here to  

 

pursue a first-quantization approach in order to understand phenomena  usually  

 

treated within second quantization.   

 

     Recent work [10] suggests that a negative-energy state does not lie empty below  

 

the ground state but rather actively participates with it to form a two-component  

 

ground-state configuration.  If a negative-energy state does not lie empty below the  

 

positive-energy states, then the quantization rules for radiative spontaneous  
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emission do not physically apply.  In [10-11] the positive-energy spectrum is  

 

identical to that of standard Dirac theory, but the wave function exhibits  

 

Zitterbewegung (or comprises contributions from both electrons and positrons in  

                                                                             

the post-hole language of [11]).  But the original motivation and experimental  

 

confirmation of Dirac theory was the spectroscopic observation of atomic fine  

 

structure.  Thus standard Dirac theory and 4-space Dirac theory [10-11] are  

 

therefore both confirmed by spectroscopic experiments, such that the confirmation  

 

of wave-function Zitterbewegung  predicted by 4-space theory requires experiments  

 

designed to probe the wave function and not the energy spectrum.  In short Dirac  

 

hole theory is incompatible with the experimental observation of Zitterbewegung,  

 

which exists if indeed the negative-energy states do not lie empty below the  

 

positive-energy states such that radiative spontaneous emission from the nominally  

 

positive-energy ground state cannot exist and therefore does not need to be blocked  

 

by the artifice of filling up the negative-energy levels with electrons.  In hole theory  

 

a positron is represented by an absent electron or hole, which is an abstract  

 

representation of an electron-positron pair since one-body Dirac theory requires a  

 

two-body interpretation of the one-body Dirac solutions. 

                                                                             

     It seems clear from the above discussion that, while the QRF is physically correct  

                                                                                

for radiative spontaneous emission, it has unphysical consequences for the  

 

radiative shift of energy levels, which is corrected in practical applications by using  

 

the physical argument of mass renormalization.  Indeed in his original paper [1]  

 

Dirac limits the use of the QRF to the emission and absorption of radiation and  
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the derivation of the Einstein A and B coefficients.  But one can use the  

 

renormalization concept that an electron permanently has radiant properties  

                                                              

which are therefore always present, such that the concept of a bare electron loses  

 

meaning.  In standard QED this concept takes the form of continuously emitted  

                                                                           

and reabsorbed photons by the quantum state of a free electron, whose  

 

mathematical implementation, as stated above, leads to the divergent shift linear in  

                                                                          

ω  for a free electron – the divergence which, when included in the bound-electron  

 

calculation, cancels the divergent shift linear in ω  for the bound electron.  One may  

 

postulate that this concept can be realized by finding a first-quantized Lorentz- 

 

invariant relativisitic  equation of motion which accounts for the radiant properties  

 

of the electron in the same way that Dirac’s equation  accounts for the material  

 

properties of the electron.  A small literature using the concept of a photon equation  

 

of motion (EOM) already exists [14], but its applications appear to be confined to  

 

experiments in which the radiation-matter interaction is unimportant.     

 

     The concept of radiation as a permanent part of the quantum states of the  

 

electron is actually introduced in renormalization theory, as discussed above.  But  

 

again the field-theoretic logic of the continuous emission and absorption of virtual  

 

photons by the same quantum state in a closed photon loop leads to a radiative  

 

correction to the electron’s mass which diverges as ω  [2].  The missing concept  

 

whose mathematical implementation would avoid this failure uses the logic that the  

 

quantum states of matter exist simultaneously and permanently with the quantum  

 

states of radiation such that the artificial boundary-value setup of virtual-photon  
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emission and absorption is averted.  Since the quantum states of matter are given  

 

by Dirac’s equation, we require a supplemental wave equation to give the quantum  

                                                               

states of radiation associated with the electron.  While Dirac’s equation accounts for  

 

the material properties of the electron, the supplemental radiation wave equation  

                                                                         

may be considered to account for the radiant properties of the electron, as observed  

 

experimentally in the Lamb shift and the electron’s anomalous magnetic moment. 

 

      In summary radiation-free matter does not exist in nature.  But theoretical  

 

  physics  has evolved, reflecting the separate developments historically of  

 

  mechanics  and electrodynamics, into a radiation-free quantum theory of matter, a  

 

  matter-free quantum theory of radiation, and a theory of the mutual interaction of  

 

  radiation and matter.  This piecemeal approach leads to an infinite energy for the  

 

  Lamb shift and other “radiative corrections” of the electron in absence of the use of  

 

  physical argument and mathematical adjustments to “renormalize” the theory in  

 

  order to obtain a finite result which remarkably agrees with high accuracy with  

 

  experimental observation.  One may question however if perfect theoretical  

 

  agreement with a specific set of experiments should be accepted with uncritical  

 

  acclaim in  absence of a theory which explains the source of the infinities and  

 

  provides a divergence-free result.  It is hard to imagine that renormalization  

 

  theory with its mathematical recipes for the removal of divergent contributions  

 

  could be a general theory of nature, not withstanding its high degree of accuracy.  

 

       Indeed one may say that particle fields for matter-free photons or photon-free  

 

   electrons represent incomplete physical descriptions of these particles.  This is  
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the lesson which we may take away from Lamb’s experiments, which demonstrate  

 

   the existence of permanent radiative shifts in atomic energy levels, namely that  

 

   radiation-free matter does not exist in nature such that a photon-free material  

 

   particle field or a particle-free photon  field, however neat and pleasing this it is 

                                                                    

   mathematically, is not a complete picture either of the material particle or of the  

 

   photon.  The renormalization scheme itself confirms this  view  since infinities are  

 

   removed from radiation-matter calculations by postulating that photons are  

 

   always present in the structure of a free electron  such that when the free- 

 

   electron radiative shift is added back to bound-electron calculations the  

 

   unphysical infinities are removed.   

 

        In Section II of this paper an equation of motion for the radiant aspect of the  

 

   electron is given.  Then in Section II we investigate the possibility that a bound  

 

   state might exist in the negative-energy region of the spectrum of the two-body  

 

   Dirac equation such that annihilation may be interpreted as an ordinary bound- 

 

   bound transition of matter rather than as the conversion of matter into light.   

 

   Finally in Section III our conclusions are presented. 
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II.  Equation of motion for the electron’s radiant aspect   

 

     It is easy to propose a radiant equation of motion (REOM) for the electron once it  

 

is recognized that the electron’s material equation of motion (MEOM), which is  

 

Dirac’s equation, can be inferred from the scalar product of the electron’s 4- 

 

momentum and a material 4-potential posited for the electron.  This understanding  

 

of Dirac’s equation suggests that a REOM can be inferred from the photon’s 4-                                                                    

 

momentum and an electromagnetic 4-potential posited for the electron. 

 

     Recalling that the scalar product of 4-vectors is always Lorentz invariant [15],  

                                                                         

Dirac’s equation can be derived by further elucidating the close relationship  

 

between Dirac’s equation and the spinorial form of Maxwell’s equation, which has  

 

been studied continuously since 1928 [16-19].  Dirac’s equation can be inferred  

                                                                       

from the scalar product of the electron’s 4-momentum and a material 4-potential,  

 

  (Ψ,
r 
Χ ) , posited for the electron as follows,                                                                     

                                                                                       

                     
  
(ih

∂
c∂t

−
V

c
,ih

r 
∇ +

e

c

r 
A )⋅ (Ψ,

r 
Χ ) = (ih

∂
c∂t

−
V

c
)Ψ + (ih

r 
∇ +

e

c

r 
A )⋅

r 
Χ = 0.       (II-1) 

                                                                                       

                                                                              

Using a carrier-wave expansions for   (Ψ,
r 
Χ )  in order to isolate a dominant frequency  

 

component of the 4-potential we obtain, 

 

                                                Ψ = Ψ−(
r 
r ,t)e− iωt + Ψ+(

r 
r ,t)e iωt                                               (II-2a) 

 
                                          

r 
Χ =

r 
Χ −(

r 
r ,t)e− iωt +

r 
Χ +(

r 
r ,t)e iωt .                                             (II-2b) 

                                                                      

On substituting Eqs. (II-2) into Eq. (II-1) and separately setting the coefficients of  

 

the exponential factors equal to zero, I obtain,  
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(ih

∂
∂t

−V − hω)Ψ+ + (ihc
r 
∇ + e

r 
A )⋅

r 
Χ + = 0                                     (II-3a) 

                                                                                                                                                  

                                   
  
(ih

∂
∂t

−V + hω)Ψ− + (ihc
r 
∇ + e

r 
A )⋅

r 
Χ − = 0.                                         (II-3b) 

 

Dirac’s equation ,           

 

                                   
  
(ih

∂
∂t

−V − mc 2)ψ + c
r 
σ ⋅ (ih

r 
∇ + e

r 
A )ξ = 0                                          (II-4a) 

 

                                   
  
(ih

∂
∂t

−V + mc 2)ξ + c
r 
σ ⋅ (ih

r 
∇ + e

r 
A )ψ = 0,                                         (II-4b) 

 

                                                                          

follows immediately on setting   hω = mc 2,    

r 
Χ + = r σ Ψ− ,   

r 
Χ − = r σ Ψ+ , Ψ+ =ψ , and Ψ− = ξ.   

 

The reader may verify that Eqs. (II-4) are indeed Dirac’s equation in coupled first- 

                                                                             

order form where ψ  and ξ  are known in the literature as the large and small  

 

components of the Dirac solution.  Notice that the electron’s spin can be interpreted  

 

as the polarization of the vector component of its posited material 4-potential. 

                                                                      

Notice that no further proof of the Lorentz invariance of the wave equation itself is  

 

required since Eqs. (II-4) have been inferred directly from a scalar product of 4- 

 

vectors, which is always a Lorentz invariant [15].  As an example Dirac’s equation 

 

for a hydrogen-like ion [20] is manifestly Lorentz invariant, but a fully relativistic  

 

Lorentz-invariant theory for two fermions is given by the Bethe-Salpeter equation  

 

[21].  As a further complication the Coulomb potential for the electron-electron  

 

interaction is incompatible with Lorentz invariance since it depends on the six  

 

spatial dimensions of  two electrons; its Lorentz-invariant representation is  

 

achieved using the force-carrier formalism in which the Coulomb force is  
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represented by he exchange of virtual photons.  If indeed future experiments show  

 

that Zitterbewegung is a real physical effect arising from the simultaneous  

 

occupancy of both positive-energy and negative-energy states by an electron, then  

 

the Bethe-Salpeter equation describing a positron and electron should be appealed  

 

to for a proper description of annihilation and pair creation.  This point is examined  

 

further in Section III. 

                                                                                    

     While Eqs. (II-4) account for atomic fine structure and the anomalous Zeeman  

 

effect,  whose spectroscopic observation was the motivation for Dirac’s equation  

 

and its experimental confirmation, radiant properties of the electron also exist  

 

which are observed as a quantum electrodynamical shift of atomic energy levels  

                                                                               

and the electron’s anomalous magnetic moment.  It is assumed that an electro-  

 

magnetic 4-potential exists for the electron such that a REOM can be inferred from  

 

the Lorentz invariant found from the scalar product of the photon's 4-momentum                                                                              

 

and the electron’s posited electromagnetic 4-potential thusly, 

 

         
  
(
h
c

∂
∂t

,h
r 
∇ − eh

mc 2

r 
E ,

r 
H ) ⋅ (Φν ,

r 
A ν ) = h

c

∂
∂t

Φe + (h
r 
∇ − eh

mc2

r 
E ,

r 
H ) ⋅

r 
A ν = 0 ,               (II-5) 

                                                                         

where the notation  
r 
E ,

r 
H  means either the electric or the magnetic fields, either   

r 
E  or  

 

  
r 
H  respectively.  The photon four-momentum is found from   h times a 4-gradient,  

  
(

∂
c∂t

,
r 
∇ −

e

mc 2

r 
E ,

r 
H ) , whose scalar product with the electromagnetic 4-current, 

  

(c(u + dt'
r 
j ⋅

r 
E 

0

t

∫ ),
r 
S ) , where 

  
u =

1

8π
(

r 
E ⋅

r 
D +

r 
H ⋅

r 
B )  is the electromagnetic energy 

density and  
  

r 
S =

c

4π
r 
E ×

r 
H  is the electromagnetic 3-current, gives the Lorentz-

invariant electromagnetic continuity equation,                                                       

           

                                                             
  

∂u

∂t
+

r 
∇ ⋅

r 
S +

r 
j ⋅

r 
E = 0 .                                                   (II-6) 
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This is simply the electromagnetic analog of writing the Lorentz-invariant material  

                                                                         

continuity equation, 

                                                               
  

∂ρ
∂t

+
r 
∇ ⋅

r 
j = 0 ,                                                              (II-7) 

as the scalar product of the known 4-gradient, 
  
(

∂
c∂t

,
r 
∇ ) , and the known material 4- 

current,   (cρ,
r 
j ) .  Notice that in the radiant-electron theory developed above the  

 known 4-gradient is simply renormalized by the replacement 
  

r 
∇ →

r 
∇ −

e

mc 2

r 
E ,

r 
H ,  

which gives a Lorentz-invariant electromagnetic continuity equation since the scalar  

 

product of   
r 
E  or   

r 
H  with the electromagnetic 3-current,   

r 
S , vanishes.  The 4-gradient  

renormalized using   
r 
E  gives an addition 3-vector, 

  

r 
∇ →

r 
∇ −

e

mc 2

r 
E , with the usual 

odd parity.  On the other hand the 4-gradient renormalized using   
r 
H  gives an  

addition 3-vector, 
  

r 
∇ →

r 
∇ −

e

mc 2

r 
H , with mixed parity.  As shown below in the 

electric-field and magnetic-field equations of motion with second-order Helmholtz  

 

form [Eqs. (II-11)], the same-parity and mixed-parity addition vectors contribute,  

 

among other terms, all four of Maxwell’s equations as interaction terms, the same- 

parity addition vector contributing   

r 
∇ ⋅

r 
E = 4πρ  and 

  

r 
∇ ×

r 
E = −

1

c

∂
r 
H 

∂t
 and the mixed 

parity addition vector contributing   
r 
∇ ⋅

r 
H = 0 and 

  

r 
∇ ×

r 
H =

4π
c

r 
j +

1

c

∂
r 
E 

∂t
.  The 

radiation-matter interaction terms are guaranteed to be gauge invariant by  

 

depending on the electromagnetic fields rather than on the electromagnetic  

 

potentials.  Our approach in this work has been to eschew the quantization of the  

 

classical electromagnetic field in favor of finding first-quantized equations of  

 

motion for the photon or, if one wishes, for the radiant aspect of the electron.  It is  

 

remarkable that an established photon 4-momentum and photon EOM to our  

 

knowledge do not exist in the literature.  The omission seems to follow from the  

 

neglect of a requirement that a complete relativistic-electron theory should be  
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compatible with the electromagnetic equation of continuity [Eq. (II-6)] as well as                                                                    

 

with the material equation of continuity [Eq. (II-7)].  Dirac required only that his  

 

equation be compatible with the material equation of continuity.  One may recall  

 

that the wave theory of electricity and magnetism followed from Maxwell’s  

 

requirement that Ampere’s equation be compatible with the material equation of  

 

continuity.  

 

     As with the electron the photon scalar and vector potentials can be written in the  

                                                                            

form of carrier-wave expansions, 

 

                                 Φν = Φν −e
− iων t + Φν +e

iων t                                                                 (II-8a) 

 

                                 

r 
A ν =

r 
A ν −e

−iων t +
r 
A ν +e

iων t ,                                                                  (II-8b) 

 

from which on substituting Eqs. (II-8) into Eq. (II-5) and separately setting the  

 

coefficients of the exponential factors equal to zero, we obtain, 

                                        

                   
  
(
1
c

∂
∂t

+ i
ων

c
)Φν + + (

r 
∇ − e

mc2

r 
E ,

r 
H ) ⋅

v 
A ν + = 0                                            (II-9a) 

 

                   
  
(
1
c

∂
∂t

− i
ων

c
)Φν − + (

r 
∇ − e

mc2

r 
E ,

r 
H ) ⋅

v 
A ν − = 0.                                            (II-9b) 

 

On setting Φν + = ξE ,H , 
  

r 
A ν + =

r σ ζ E ,H , Φν − = ζE ,H , 
  

r 
A ν − =

r σ ξE ,H  we obtain the 

                                                                         

Dirac form for the REOM, 

                                                                        

                       
  

∂ξE,H

c∂t
+ i

ων

c
ξE ,H +

r σ ⋅ (
r 
∇ − e

mc2

r 
E ,

r 
H )ζE ,H = 0                                       (II-10a) 

 

                       
  

∂ζE ,H

c∂t
− i

ων

c
ζE ,H +

r σ ⋅ (
r 
∇ − e

mc2

r 
E ,

r 
H )ξE ,H = 0.                                      (II-10b) 

                                                               

Writing ξE ,H = e− iωtψE ,H  and ζ E ,H = e− iωtχE ,H  in Eqs. (II-10) we derive stationary  
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equations forψE ,H  and χE ,H ; then we eliminate the equation for χE ,H  in favor of a  

 

second-order equation for ψE ,H ,obtaining equations for the electric and magnetic  

 

photon wave functions which have the Helmholtz form, 

                                                                  

      
  
{∇2 + ω 2 −ων

2

c 2
− e

mc 2
[
r 
∇ ⋅

r 
E + 2

r 
E ⋅

r 
∇ + iσ ⋅ (

r 
∇ ×

r 
E ) − e

mc 2
E 2]}ψE = 0               (II-11a) 

  

      
  
{∇2 + ω 2 −ων

2

c 2
− e

mc 2
[
r 
∇ ⋅

r 
H + 2

r 
H ⋅

r 
∇ + iσ ⋅ (

r 
∇ ×

r 
H ) − e

mc 2
H 2]}ψ H = 0,             (II-11b)                                        

where we have used the identity,   (
r σ ⋅

r 
A )(

r σ ⋅
r 
B ) =

r 
A ⋅

r 
B + i

r σ ⋅ (
r 
A ×

r 
B ).                                  

 

Eq. (II-11b), for   hων = 0, was used in physical applications to calculate a divergence- 

 

free Lamb shift [22] and electron’s anomalous magnetic moment [23].   

 

     Notice that in Eqs. (II-11) the electromagnetic fields and not the electromagnetic  

 

potentials occur such there is no question of a gauge dependence of matter-light  

 

interactions in the electron’s REOM.  The success of the use Eqs. (II-11) to calculate  

 

divergence-free radiative properties of matter [22-23] suggests that the concept of  

 

radiation as a permanent part of the structure of matter is a valid one.  Recall that  

 

this is identically the concept of mass renormalization used in standard  

                                                                

QED used to remove infinite contributions to the electron’s energy arising from   

 

unphysical logic that first-quantized states of matter exist which are totally free of  

 

radiation.  As we have shown here it is possible to present a  theory in which the  

 

electron does not exist in a bare or radiation-free state and whose material and  

 

radiant properties are described by a pair of relativistic, Lorentz-invariant first- 

 

quantized material and radiant EOM’s respectively.   
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III.  Pair creation and annihilation in two-body Dirac theory. 

 

     Toward a resolution of the paradox of the incompatibility of hole theory and  

 

Zitterbewegung [9,12] a two-body Dirac theory is used to calculate the spectrum of  

 

the positronium atom (Ps).  Countless annihilation and pair-creation experiments  

 

are successfully interpreted using hole theory, which is part of Dirac’s interpretation  

 

of the negative-energy states, namely that an absent electron in the set of negative- 

 

energy states filled with electrons represents a positron such that annihilation and  

 

pair-creation are interpreted as two-photon transitions downward to and upward  

 

from a hole state respectively.  Hence a reconciliation of Zitterbewegung and hole  

 

theory requires that the two-fermion spectrum for an electron and positron contain  

 

both the known ground state and a negative-energy state with binding energy equal  

 

to 2mc2.  To our knowledge two-body Dirac theory has heretofore not been used to  

 

search for a bound state lying below the nominal ground state.   

                                                                                   

     Two-body Dirac theory previously has taken several forms.  A two-body Dirac  

                                                                               

equation can be written down and solved [24], but it is not Lorentz invariant owing  

 

to the 6-space nature of the positron-electron Coulomb interaction.  Alternatively  

 

the Bethe-Salpeter equation [21] is a fully relativistic, Lorentz-invariant equation for  

 

two fermions, but Lorentz invariance requires that the Coulomb interaction must be  

 

represented by the exchange of virtual photons.  The force-carrier formalism for the  

 

interaction suggests that the Bethe-Salpeter equation is of limited usefulness for  

 

bound-state problems which require a nonperturbatively solution.  Also it is  

 

possible to use Dirac’s relativistic constraint mechanics to find an exact solution  
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for the singlet state of positronium [25].  And as well two-body Dirac equations of  

 

constraint dynamics has been used to search for states below the nominal ground  

 

state of positronium [26].     More recently a dynamical theory is available [27]  

 

which preserves Lorentz invariance for a many-electron ensemble by using a Dirac  

 

equation for each electron in which the Coulomb interaction (using a two-electron 

example) is calculated in 4-space as 
  

υ12 =
e2

|
r 
r − r 

s (t) |
, where   

r 
r  is the 3-space position 

of the electron whose Dirac equation one is solving and   
r 
s (t)  is the spin-dependent  

 

quantum trajectory of the second electron which is inferred from the Dirac current  

 

of the second electron using its Dirac equation, and conversely for second electron.   

 

Coulomb’s law is given to us by classical electrodynamics as the inverse distance  

 

between two point electrons, and it is calculated in relativistic 4-space for use in  

 

individual Lorentz-invariant equations of motion without resort to the artifice of  

 

representing it by the exchange of virtual photons.  Thus far this methodology has  

 

been tested only in the nonrelativistic limit to solve the electron exchange- 

 

correlation problem.  It provides a natural physical explanation for the Pauli  

 

Exclusion Principle and Fermi-Dirac statistics by correlating the electron-electron  

 

Coulomb interaction with the spin state of each electron.  The historical evolution of  

 

quantum mechanics to construct a single wave function for N electrons instead of  

 

constructing N wave equations of established correctness for N electrons is possibly  

 

a scholastic exercise.  In fact it is inconsistent with classical mechanics, in which the  

 

special theory of relativity was formulated by Einstein, as a theory using N  

 

equations of motion for N bodies.  We believe that the one-body 4-space approach  
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has a compatibility with the special theory of relativity which is obscured  

 

by the mathematical complexity of the standard approach seeking a single wave  

                                                                   

function for N bodies.  

 

     In this paper we want to use a relativistic quantum theory for two fermions which  

 

is Lorentz invariant but yet free of the mathematical complexity of the theories just                                        

                                                                 

adumbrated.  Therefore the Hartree or self-consistent field model will be used here.   

 

Although the Coulomb potential between the two fermions is replaced by its  

 

quantum mean with respect to either fermion and is thus an approximate  

 

interaction potential, this procedure nevertheless preserves Lorentz invariance in  

 

the form of a one-body Dirac equation for each fermion. 

 

     The Dirac equations for the electron and positron with Hartree potentials  

 

appropriate for each are given respectively by Eqs. (II-4) and by 

 

                                     
  
(ih

∂
∂t

−Vp − mc 2)ϕ + c
r 
σ ⋅ (ih

r 
∇ + e

r 
A )χ = 0                                  (III-1a) 

 

                                      
  
(ih

∂
∂t

−Vp + mc 2)χ + c
r 
σ ⋅ (ih

r 
∇ + e

r 
A )ϕ = 0                                  (III-1b) 

 

                                         
  
V = −e2 d

r 
r '

|ϕ(
r 
r ') |2 + | χ(

r 
r ') |2

|
r 
r − r 

r '|
∫ ,                                               (III-1c) 

                                                                             

                                         
  
Vp = −e2 d

r 
r '

|ψ(
r 
r ') |2 + |ξ(

r 
r ') |2

|
r 
r − r 

r '|
∫                                                 (III-1d) 

 

in which the quantum means of the attractive electron-positron Coulomb potential, 

  
υ12 = −

e2

|
r 
r − r 

r '|
, as given by Eq. (III-1c) and (III-1d), are calculated respectively using  

the quantum density of the positron as given by the sum of large-component and  

 

small-component densities shown in the numerator on the right side of Eq. (III-1c) 
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and similarly by the quantum density of the electron as given by the sum of large- 

 

component and small-component densities shown in the numerator on the right  

 

side of Eq. (III-1d).  The Dirac equations for electron and positron are fully  

 

relativistic and Lorentz invariant, but they must be solved iteratively since the  

 

potentials depend on knowing the quantum densities for each fermion.  It is found  

 

that 10 iterationsare sufficient to achieve convergence in the energy as given by the  

 

operator identity
  
ih

∂
∂t

= E .  In absence of electromagnetic fields   
r 
A = 0. 

                                                                   

     Eqs. (II-4) are solved variationally by separating variables using  

                                                                

  
ψ(

r 
r ) = Gκ (r)χκµ (θ,φ)  and 

  
ξ(

r 
r ) = iFκ (r)χ−κµ (θ,φ) .  The energy is given by 

 

 

  

E = mc2 drr2Gκ
2

0

∞

∫ (r) − mc2 drr2Fκ
2

0

∞

∫ (r) + drr2V (r)[Gκ
2

0

∞

∫ (r) + Fκ
2(r)] +

hc{ drr2[Fκ (r)Gκ
' (r) −

0

∞

∫ Gκ (r)Fκ
' (r) + 2

κ
r

Fκ (r)Gκ (r)]},

 (III-2) 

 

where the identities, 
  

r σ ⋅
r 
∇ = r σ ⋅ ˆ r (

∂
∂r

−
r σ ⋅

r 
l 

r
) , 
  

r σ ⋅ ˆ r χκµ (θ,φ) = −χ−κµ (θ,φ) , and 

  

r σ ⋅
r 
l χκµ (θ,φ) = −

κ +1

r
χκµ (θ,φ)  have been used, where   

r σ ⋅
r 
l = j2 − l 2 − s2  and 

 

j 2χκµ (θ,φ) = j( j +1)χκµ (θ,φ) , 
  
l 2χκµ(θ,φ) = l (l +1)χκµ(θ,φ), and  

 

s2χκµ (θ,φ) =
1

2
(
1

2
+1)χκµ (θ,φ) .  For states of 1S1/ 2 symmetry, κ = −1,µ =1/2  (for  

 

angular momentum states j=1/2,   l = 0)and similarly for the positron equation  

 

except that µ = −1/2 .  The radial functions are represented by the trial forms  

 

G−1(r) = Ne−wr  and 
  
F−1(r) = −N

hcw

E −V + mc 2 e−wr , where N is the normalization 

constant given by N 2{ drr2

0

∞

∫ [G−1
2 (r) + F−1

2 (r)]} =1.  The same trial forms are used for  
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both fermions, where w is a parameter which is varied to find a minimum in E.  The  

 

latter step is carried out by making a first guess for E and inserting it wherever E  

 

occurs in a denominator.  For a positive-energy state this guess is just E = mc2,  

 

which is not updated since the positive-energy state occurs in the nonrelativistic  

                                                                 

regime, in which the binding energy is much less than mc2 (Fig. 1).   It is unlikely  

 

that the exponentially decaying trial forms with cusps at the origin will share any  

                                                                

energy with the unbound center of mass, which may be considered to be at rest. 

 

The error of course is in the absence of electron correlation in the relative motion, 

 

but we will tolerate this error in gratitude for a mathematically simple theory with  

                                                                   

which to investigate our assumption, which questions the orthodoxy of Dirac’s hole  

 

interpretation of the negative-energy region of the spectrum, that Ps has a bound  

 

state in the negative-energy region.  

 

     It is easy to understand the nature of the binding of the e+e− pair from analysis of  

Eq. (III-2).  In the positive-energy region of the spectrum 
  
F−1 ≅ −N

hw

mc
e−wr  such that 

|F−1 |<< G−1, which means that the first term on the right side of Eq. (III-2) is nearly  

 

equal to mc2, the second term is negligible, and the lowest positive-energy bound  

                                                                  

state therefore lies just below mc2 (Fig. 1).  Notice that the Hartree model gives 80%  

 

of the known binding energy of 0.25 au (1 au = 27.21 eV).  Figs. 2-3 give the family of  

 

wave functions   for the values of the variational parameter, w, used in the  

 

calculation.  These are presented in order to demonstrate the dominance of G-1 over  

 

F-1 in the positive-energy region. 

 

     For a negative-energy state E is guessed to lie close to –mc2 and is updated until a  
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minimum in E found which agrees with the guessed-at denominator energy as  

 

closely as possible.  This match is not perfect owing to the approximate nature of the  

 

calculation, but the energy calculated from Eq. (III-2) at the minimum shown in  

 

Fig. 4 (-18659 au) is 99.6% of the guessed energy (-18732 au), which is acceptable  

 

for this calculation.  

                                                                

     On the other hand in the negative-energy region of the spectrum the denominator  

 

E-V+mc2 neatly vanishes for E ≅ −mc 2such that |F−1 |>> G−1, which means that the  

 

second term on the right side of Eq. (II-2) is nearly equal to –mc2, the first term is  

                                                                   

negligible, and the lowest negative-energy bound state therefore lies just above 

 

 –mc2 (Fig. 4).  (All bound states lie in the regime −mc 2 < E < mc 2.)  The negative- 

 

energy bound state has not hitherto been reported due to the hole interpretation of  

 

one-body Dirac theory discussed at length above.  Figs. 5-6 give the family of wave  

 

functions for the values of w used in the calculation. These are presented in order to  

 

demonstrate the dominance of F-1 over G-1 in the negative-energy region. 

 

     Remarkably the term in Eq. (III-2) proportional to κ , which is positive and  

 

therefore repulsive for κ = −1 and opposite phases for G-1 and F-1, lifts the binding  

 

energy (E-mc2) in the positive-energy region above its minimum value given by the    

 

sum of the second and third terms on the right side of Eq.(III-2) and is effectively the  

 

kinetic-energy contribution to the total energy, E.  Conversely this kinetic-energy  

 

term and to a lesser extent the fourth and fifth terms on the right side of Eq. (III-2)  

 

lift the energy from a point below –mc2, which lies in the negative-energy  

 

continuum, into the binding region above –mc2.  Remarkably a large kinetic energy                                                               
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in the negative-energy region makes binding possible by overcompensating for the                                                             

 

second and third thirds term on the right side of Eq. (III-2), which are negative and  

 

therefore attractive and move E in the direction of less binding in the negative-                                                          

 

energy region, in contrast to moving E in the direction of greater binding in the  

 

positive-energy region. 

 

                                                                 

IV.  Conclusion 

 

     In summary the Hartree model for two-body Dirac theory predicts that a bound  

 

state for Ps exists in the negative-energy region of the spectrum, such that  

 

annihilation and pair creation may be interpreted as ordinary two-photon emission  

 

and absorption respectively between the nominal ground state and the negative- 

 

energy state.  This result shows that hole theory is not unique to the explanation  

 

of annihilation and pair creation and therefore lifts the ambiguity that  

 

Zitterbewegung [9,12] cannot be a real physical effect due to Dirac’s hole  

 

interpretation of his one-body equation.  It is hoped that this study will stimulate  

 

further work using more accurate two-body Dirac theory either to confirm or falsify  

 

the present Hartree-model result. 
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Figure Captions 

 

Fig.  1. E+ − mc 2 versus w for the lowest positive-energy state of Ps in the Hartree  

model. 

 

 

Fig. 2.  G-1(r) versus r in the positive-energy region of the spectrum for the sweep of 

w values used in the calculation. 

 

 

Fig. 3.  F-1(r) versus r in the positive-energy region of the spectrum for the sweep of 

w values used in the calculation. 

 

 

Fig.  4. E−  versus w for the lowest negative-energy bound state for Ps in the Hartree 

model.   

 

 

Fig. 5.  G-1(r) versus r in the negative-energy region of the spectrum for the sweep of 

w values used in the calculation. 

 

 

Fig. 6.  F-1(r) versus r in the negative-energy region of the spectrum for the sweep of 

w values used in the calculation. 
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