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Solitary Wave Solutions to the Strain Wave Equation in Microstructured
Solids through the Modified Simple Equation Method

Abstract: The modified simple equation (MSE) method is an effective method in
investigating exact solitary wave solutions to nonlinear evolution equations (NLEEs) in the
field of applied mathematics, mathematical physics and engineering. But, when the balance
number is greater than one, typically the method does not give solution. In this article, we
find out a procedure to examine the exact traveling wave solutions to the strain wave
equation in microstructured solids whose balance number is two. By means of this scheme,
we found some new traveling wave solutions of the above mentioned equation. When the
parameters receive particular values, solitary wave solutions are originated from the exact
solutions. These solutions play very important role in the engineering field. We analyze and
illustrate the solitary wave properties of the solutions by graph. This shows the validity,

usefulness, and necessity of the MSE method.

Keywords: MSE method; nonlinear evolution equations; solitary wave solutions; exact

solutions; strain wave equation; microstructured solids.
Mathematics Subject Classification: 35C07, 35C08, 35P99
1. Introduction

Physical systems are in general explained with nonlinear partial differential equations. The
mathematical modeling of microstructured solid materials that change over time depends
closely on the study of a variety of systems of ordinary and partial differential equations.
Similar models are developed in diverse fields of study, ranging from the natural and physical
sciences, population ecology to economics, infectious disease epidemiology, neural networks,
biology, mechanics etc. In spite of the eclectic nature of the fields wherein these models are

formulated, different groups of them contribute adequate common attributes that make it
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possible to examine them within a unified theoretical structure. Such study is an area of
functional analysis usually called the theory of evolution equations. Therefore, the
investigation of solutions to nonlinear evolution equations (NLEES) plays a very important
role to uncover the obscurity of many phenomena and processes throughout the natural
sciences. However, one of the essential problems is to obtain their exact solutions. Therefore,
in order to find out exact solutions to NLEEs different groups of mathematicians, physicist,
and engineers have been working tirelessly. Accordingly, in the recent years, they establish
several methods to search exact solutions, for instance, the Darboux transformation method
[1], the Jacobi elliptic function method [2, 3], the He’s homotopy perturbation method [4, 5],
the tanh-function method [6, 7], the extended tanh-function method [8, 9], the Lie group
symmetry method [10], the variational iteration method [11], the Hirota’s bilinear method
[12], the Backlund transformation method [13, 14], the inverse scattering transformation
method [15], the sine-cosine method [16, 17], the Painleve expansion method [18], the
Adomian decomposition method [19, 20], the (G'/G)-expansion method [21-26], the first
integration method [27], the F-expansion method [28], the auxiliary equation method [29],
the ansatz method [30, 31], the Exp-function method [32, 33], the homogeneous balance

method [34], the modified simple equation method [35-39], the exp(—¢(77))-expansion

method [40, 41], the Miura transformation method [42], and others.

Microstructured materials like crystallites, alloys, ceramics, and functionally graded materials
have gained broad application. The modeling of wave propagation in such materials should
be able to account for various scales of microstructure [43]. In the past years, many authors
have studied the strain wave equation in microstructured solids, such as, Alam et al. [43]
solved the strain wave equation in microstructured solids by using the new generalized

(G'/ G)-expansion method. Pastrone et al. [44], Porubov and Pastrone [45] examined bell-

shaped and kink-shaped solutions of this engineering problem. Akbar et al. [46] constructed
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traveling wave solutions of this equation by using the generalized and improved (G'/G)-
expansion method. The above analysis shows that several methods to achieve exact solutions
to the strain wave equation in microstructured solids have been accomplished in the recent
years, but the equation has not been studied by means of the MSE method. The modified
simple equation method [35-39] is a lately developed augmentative method. Its computation
is straightforward, systematic, and no need the computer algebra to control the supplementary
equations. In this article, we have explored exact solutions including solitary wave solutions

to this equation by using the MSE method.

The rest of this article is organized as follows: In section 2, we summarize the description of
the method. In section 3, we employ the method to NLEEs with balance number two and in

section 4, conclusions are given.

2. The Method

Let us consider the nonlinear evolution equation of the form

H(u,u,, u ,u,,u,u, . u,,.)=0, 2.1)

Uy,
where u =u(x,t) is an unknown function, A is a polynomial in u(x,?) and its partial
derivatives, which include the highest order derivatives and nonlinear terms of the highest
order, and the subscripts denote partial derivatives. In order to solve (2.1) by means of the
MES method [35-39], we have to execute the following steps:
Step 1: The traveling wave variable,
u(x,y,z,t) =u(é), E=k(x+y+ztwt) (2.2)
allows us to change the Eq. (2.1) into the following ordinary differential equation (ODE):
Fu,u',u",--)=0, (2.3)

where F is a polynomial in #(&) and its derivatives, wherein u'($) = iy

dg

Step 2: We suppose that Eq. (2.3) has the solution in the form,
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u(e‘)—g}a{s(é)} , (2.4)

where a;, (i=0,1,2,---,N) are constants to be determined, such that a, # 0, and s(&) is an
unidentified function to be evaluated. In sine-cosine method, tanh-function method, (G'/G)-

expansion method, Jacobi elliptic function method, Exp-function method etc., the solutions
are proposed in terms of some functions established in advance. But, in the MSE method,
s(&) is neither pre-defined nor a solution of any prescribed differential equation. Therefore, it

is not possible to conjecture from earlier what kind of solutions one may get through this
method. This is the individuality and distinction of this method. Therefore, some new

solutions might be found by this method.

Step 3: The positive integer N appearing in Eq. (2.4) can be determined by taking into

account the homogeneous balance between the highest order nonlinear terms and the
derivatives of the highest order occurring in Eq. (2.3). If the degree of u(&) is

deg[u(&)] = N, then the degree of the other expressions will be as follows:

—dmu(gg)] =N+m, deg[um(—dllll(eg )'1=mN+p(N+I).

deg[ Nz dé’

Step 4: We substitute (2.4) into (2.3) and then we account the function s(&). As a result of
this substitution, we get a polynomial of (s’(f)/s(rf)) and its derivatives. In the resultant
polynomial, we equate the coefficients of (S(é‘))_i, (i=0,1,2,..., N) to zero. This procedure
yields a system of algebraic and differential equations which can be solved for getting a,

(i=0,1,2,---,N), s(¢) and the value of the other needful parameters.

3. Application of the Method

In this section, we will execute the application of the MSE method to extract solitary wave

solutions to the strain wave equation in microstructured solids which is a very important
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equation in the field of engineering. Let us consider the strain wave equation in

microstructured solids:

2 2
Uy —U,, —EQ (u )xx — YU, + 5a3uxxxx - (50[4 -V & )uxxtt + 75(a5uxxxxt + a6uxxttt) =0. (31)

3.1. The Non-dissipative Case: The system is non-dissipative, if y =0 and governed by the

double dispersive equation (see [43], [48] for details)

2
Uy —Uy — 8O (Ll )xx + §a3uxxxx - §a4uxxtt =0. (32)

The balance between dispersion and nonlinearities happen when 6 = O(¢). Therefore, (3.2)
becomes
u, —u,. —&la (uz)” —o3u, ., Fouu, ., =0. (3.3)

In order to extract solitary wave solutions of the strain wave equation in microstructured

solids by using the MSE method, we use the wave variable

u(x,)=U(),=k(x—w1). (3.4)
The wave transformation (3.4) reduces Eq. (3.3) into the ODE in the following form:

(@ -DWU"-ea,U*)' +eck’(a, -0*a,)UY =0. (3.5)
where prime denotes derivatives with respect to . Now, integrating Eq. (3.5) twice with
respect to &, we get a new ODE in the form:

(@ -DU-sa,U* +ek*(a, —0*a,)U" =0, (3.6)

where the integration constants are set zero, as we are seeking solitary wave solutions.

Balancing the highest order derivative term U"” and the nonlinear term of the highest order

U? involving in Eq. (3.6), we get N = 2. Thus, the solution (2.4) becomes

, N2
U(§)=a0+al(s j+a2 (S—j , (3.7)

S N
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118  where a,, a, and a, are constants to be determined later such that a, # 0, and s(&) is an

119  unknown function. The derivatives of U are given in the following:

"2 n3 " "
120 U,z_al(i) _2azgs) LS 2a2;s (3.8)
s s s s
2 n3 n4 | n2 ) "2 "o rm
171 U = a1(3s) +6azgs) _3a1§s 3 Oaz(;v) s az(zs) Las” azjs . (3.9)

N N N N S N S

122 Substituting the values of U, U’ and U" into Eq. (3.6) and then equating the coefficients of
123§/, 7j=0,1,2, --- to zero, we respectively obtain

124 ay(~1+ @* —ga, o)) = 0. (3.10)
125 a, ((—1+a)2—28a0 al)s'+k25(a3—w2a4)s"'):0. (3.11)

126 —says' (a8 +3K% (@ — 0’ ay) s") +ay (<1 + 0° =28 ay) (s') (3.12)
+a, 2k%e(ay — 0’ ay) (s")) + 2k e (a3 — @’ ay) s's")) = 0.

127 —22(5) oy, &4 + K2 (—aty + @7 t)) s+ 5K2a, (s — 0’ay) s")=00. (3.13)
128 —ea, (ayo, — 6k (o - 0t )(s)* =0 (3.14)
129  From Eq. (3.10), we obtain

1+ a?
130 a, =0, :
e

131 And Eq. (3.14), yields

_ 6(kK’a; —k*o’a,)

a;

132 a,

since a, #0.

133 Therefore, for the values of a,, there arise the following cases:

134  Case 1: When a, =0, from Egs. (3.11)-(3.13), we obtain

. 6k\(1-0°) (s - 0ay)

e ,

135 a =

136 And
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where ¢, and ¢, are integration constants.

Substituting the values of ay,a,,a, and s(&) into Eq. (3.7), we obtain the following

exponential form solution:

S
6clczk(1—a)) We km
vy =2 ot 2 (3.15)
x&

[ ~ 2
a el e (—w?)e VBT _pe e(ay - 0ay)

Simplifying the required solution (3.15), we derive the following close-form solution of the

strain wave equation in microstructured solids (3.3):

6kc, cz(l—a)z)\/l—a)2 \/(053 -o’a,)

u(x,t)== , (3.16)
a, e (e, V11— o* (cosh(B(x — w1)) + sinh(B(x — w1)))
2
+keye(o, — a)2a4)(sinh(ﬁ(x —wt))F cosh(f(x — a)t)))
1-»* . . . . .
where £ = . Solution (3.16) is the generalized solitary wave solution of the

2
2 \/ (o, —o" ay)
strain wave equation in microstructured solids. Since ¢; and ¢, are arbitrary constants, one

might arbitrarily choose their values. Therefore, if we choose ¢, =vl-w” and

¢, =Fkye(a; —@*a,) then from (3.16), we obtain the following bell shaped soliton

solution:

u (x, t)——(l a))sech{v(l @) (- “”)} (3.17)

2\/5 (a; —0’ay)
Again, if we choose ¢, = 1-w? and ¢, =tk e(ay —w2a4) , then from (3.16), we obtain

the following singular soliton:
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u,(x,t) =

(1—af)csch2[V(l“f)(x‘””}. (3.18)

o 2\/5(a3 —a)2a4)

On the other hand, when ¢, =v1- »® and ¢, =ikq&(a; - w2a4) , from solution (3.16), we
derive the solitary wave solutions in the form:

-3(1-w?)

[ 2
Ea lisinh{ d-o )(x—a)t)J

usy(x,t) = (3.19)

g(a; —o’a,)
Again when ¢, =+v1- o’ and c, =—ikqe(y —a)2a4) , then the generalized solitary wave
solution (3.16) can be simplified as:

—-3(1-w?)

ga,1+isinh N(l—a)z)(x—a)t)
] Vé(as —w2a4)

The other choices of ¢, and c¢,, we might obtain much new and more general exact solutions

uy (x,1) = (3.20)

of Eq. (3.3) by the MSE method. For succinctness, other solutions have been omitted.

. e

Case 2: When q,, = , then Eqgs. (3.11)-(3.13) yield

1

i6kJGJ+wﬂah—w%q)

a, =
1 oy e

And
5 T §\/—1+a)2
keye(oy —o a [e(an-0la
s =c,F o é(a 4)ek (a3 4),

\/—1+a)2

where ¢, and ¢, are constants of integration.
Now, by means of the values of a,,a;,a, and s(&), from Eq. (3.7), we obtain the subsequent

solution:
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(—1+0) (11 0*) 2 27 1 k¢! £ (ay -0’ at,)
i4kclc2\/<9(—1+a)2)(oz3 ~w’a,) e”g)

2 b
ca, (1/(—1+a)2 c,e”’  Fke e (a, —a)za4))
-1+ w?

k\/g(a3 -o’a,)

U(e) =

(3.21)

where y = . Now, transforming the required exponential function solution

(3.21) into trigonometric function, we obtain the following solution to the strain wave

equation in the microstructured solids:

(—1+a)2)(i4kc, e e(-1+0°) (@, -0 a,)
+c;(-1+w*)(cosh@ +sinh ) + ¢} k*(a; —»” a,)(cosh & F sinh 9))

} (3.22)
ca, (1/8 (=1+ @) (cosh(@/2) *sinh(8/2))c,
+kqe (a; -0 a,)(sinh(0/2)F cosh(é’/Z)))z

Thus, we acquire the generalized solitary wave solution (3.22) to the strain wave equation in

(x—ot)V-1+ &*

\/5 (a5 — a)2a4)

u(x,t) =

microstructured solids, where 6= . Since ¢, and c, are integration

constants, therefore, somebody might randomly pick their values. So, if we pick ¢, =V’ -1

and ¢, =tk e(ay — a)za4) , then the solitary wave solution (3.22) reduces to:

[ 2 [/ 2
o -1 2 + cosh (@ ~Dx-oh csch? (@ —D&x-oh (3.23)
24/e(a; —w*ay)

Again, if we pick ¢, =V’ -1 and ¢, = Fkye(a; - w2a4) , then from (3.22), we obtain the

us(x,t) = -
e(ay—w ay)

subsequent solitary wave solution:

o’ -1 J(@* 1) (x - w1) o J(@* =1) (x— wt)

— 2+ cosh

ug(x,t) =
2eay Je(a; —o’ay) 24e(a; -0 ay)
Moreover, if we pick ¢, =v@® —1 and ¢, =ikq/e(a, —a)2a4) , then from (3.22), we obtain

the following solution:

(3.24)
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(w* —1)| —2i+sinh M(x—a)t)

u,(x,t) = . (3.25)
i+sinh{ (@ —1) (x—a)t)}

2
ela,—w ay)

ca

Again, if we pick ¢, =V’ —1 and ¢, = —iky&(a; - w2a4) , then from (3.22), we derive the

following solution:

Je(a, —o’a,)

ug(x,t) = . (3.26)

ga,| —i+sinh /@ - (-0
Vé(a, —o’a,)

(0 =1) 2i+sinh{mw_a)t)}

Since ¢, and c, are arbitrary constants for other choices of ¢, and c,, we might obtain much

new and more general exact solutions of Eq. (3.3) by the MSE method without any aid of
symbolic computation software. The major advantage of the MSE method is that the
calculations are not sophisticated and easy to control. It is not required any computer algebra

system to facilitate the calculations, whereas to the Exp-function method, the (G'/G)-

expansion, the tanh-function method, the homotopy analysis method etc. the computer
algebra system is very much needed. However, the solutions obtained by the MSE method

are equivalent to those solutions obtained by the above mentioned method.

Remark 1: Solutions (3.17)-(3.20) and (3.23)-(3.26) have been verified by putting them back
into the original equation and found correct.

3.2. The Dissipative Case: If y =0, then the system is dissipative. Therefore, for
0=y =0(¢), the balance should be between nonlinearity, dispersion and dissipation,

perturbed by the higher order dissipative terms to the strain wave equation in microstructured

solids,

10
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2
Uy —U, —E (al M) ol —OsU o+ a4um,): 0. (3.27)
since & — 0, so the higher order term are omitted.

The traveling wave transformation (3.4) reduces Eq. (3.27) to the following ODE:

(@ -DU"-e(a,(U>) —kwa,U"—k*(a, — o*a,) UY =0. (3.28)

where prime denotes the derivatives with respect to &. Integrating Eq. (3.28) with respect to

&, we obtain
(@ -DWU-eo,U* +skoa,U +sk*(a; —0’a,)U"=0. (3.29)

Balancing the highest order linear term and the nonlinear terms of the highest order, we get
N = 2. Therefore, the shape of the solution of Eq. (3.29) is one and the same to the form of

the solution (3.7).
Substituting the values of U, U" and U" into Eq. (3.29) and then equating the coefficients of
s 57 572 57, s to zero, we respectively obtain
ay(~1+ @* —ga, o)) = 0. (3.30)
a(1+0° —22a,0)5' +kewa, 8"+ k (o, - ) s")=0. (3.31)

-£aq s'(al o s'+k(wa,s"+3k(a; - w2a4)s”))+ a, (-1+ o* =2 aya,)(s")* (3.32)
+2k%e (0 — 0’y (s") )+ 2a,k e 5" (wa, " +k (a; — o a,)s™) =0. '

“2eay(a o +K (—ay + 0°ay) )8 — 22k ay (5 (@ s’ + 5k (@ — 0’ay)s")=0. (3.33)
—ea, (a0, - 6k (o - 0ty )(s')* =0 (3.34)

From Egs. (3.30) and (3.34), we obtain

-1+’ 6k*(a; —0’ay) .
and a, = ,since a, #0.
gy o,

ao :0,

Therefore, depending on the values of q,, the following different cases arise:

11
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Case 1: When a, =0, from Egs. (3.31) - (3.33), we get

a1=O,
s |y _bea +25053_\/(650522—25053—25054)2—2500053054 e
5\/5 a, a, a, 1
= (say)
N l_3ea22+ a, +\/(6$a22—25a3—25a4)2—2500a3a4 iy
2 25a, 2a, 50 a, ’

And
() =ey 7Lt

. . wa,
where ¢, and ¢, are integration constants and /4 = — > .
Skia3 -0 a, )

Now, substituting the values of a, a,, a, and s(&) into Eq. (3.7), we obtain the following
solution:
6k2012(0‘3 —w2a4)€2 he

2
c
al(};ehvaczj

Simplifying the required solution (3.35), we derive the following close-form solution of the

U(e) =

(3.35)

strain wave equation in microstructured solids (3.27):

61°k* ¢f (a3 — w*ay) {cosh(hk(x — wt))+sinh(hk(x — 1))}
o {(cosh(hk(x — wt)/2)+sinh(hk(x - wt)/2))c, '
+h(cosh(hk(x—wt)/2)-sinh(hk(x - wt)/2))c,

u(x,t)= (3.36)

Since ¢; and ¢, are integration constants, one might arbitrarily select their values. If we

choose ¢, =/ and ¢, =1, then from (3.36), we obtain

3k (@ - 0’ a,) (cosh(h k(x — 1))
2a, | (3.37)
+sinh(hk(x - a)t)))sec h* (Eh k(x—wt))

uy(x,t) =

12
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Again if we choose ¢, =/ and c, = -1, then from (3.36), we obtain the following solitary

wave solution:

3%k (o —a)za4)(
2a

Uy (x,1) = cosh(hk(x — wt))

+sinh(hk(x - wt)))esch’ (%h k(x — wt))

1+ a?

Case 2: When q,, =

, from Eq.(3.31) - (3.33), we obtain
e

Cll ZO,

1 \/650522 +25(a; + 054)—\/(630522 +25(a; +a,))’ -2500a,a,

a,

1 \/650522 +25(a, +054)+\/(6$0522 +25(a; +a,))’ 2500,

a,

And

—wa,

Ske(a, —0)20!4)esk(

a3 —a)za4)

s(§)=c¢c, -

b

oa,

where ¢, and c, are constants of integration.

(3.38)

I+

= 91
(say)

= 10,

Substituting the values of a,, a;, a, and s(&) into Eq. (3.7), we obtain the solution in the

form:

~1+ 0’ 6k>w’c a3 (o, —o’ay)
U(g)z " + 1 2 3 4 =

a, 0a

o,
2
a,| wc, e’ Sk (a, - 0’a,)

(3.39)

Simplifying the required exponential function solution (3.39) into trigonometric function

solution, we derive the solution of Eq. (3.27) as follows:

13
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264

265
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267

o’ a22022 (@* -1) (cosh((p) - sinh((p))— 10kwc, c, a, (@® -1) (a5 — a)za4)

+k*cl(ay - 0*ay) (6 sw*a; +25(w0” —1)(a; - a)2a4))(cosh(¢)) +sinh(¢))

2
eaq {a) czaz(cosh(gj — sinh(qz)]j —5k(ay — w2a4) cl(cosh((gJ n sinh((gn}

Therefore, we obtain the generalized soliton solution (3.40) to the strain wave equation in

u(x,t)=

(3.40)

. . wa, (x—ot .
microstructured solids, where ¢ = _oa,(x-of) and w=16, or £6,. But, since ¢, and

2
S5(ay—w ay)
¢, are arbitrary constants, someone may arbitrarily choose their values. So, if we choose

¢, =a,w and ¢, =5k (a; — @), the solitary wave solution (3.40) becomes

2
3ew’al (1 + coth{waz(_erwt)D +50(0” - 1) (a; —0’a,)

10(a; - o’a,)

u,, (x,t) = 3.41)

S0ca, (a;, —0’a,)

Again, if we choose ¢, =a, @ and ¢, =-5k(a; —w2a4), from (3.20), we obtain the

following solitary wave solutions in the form:

2
3ew’al (1 + tanh{waZ(_MD +50(0” - 1) (a; - 0’a,)

10(a, ~0’a,)

U, (x,t) = (3.42)

S0ca, (o, —0’a,)

Since ¢, and ¢, are arbitrary constants for other choices of ¢, and ¢, , we might obtain much
new and more general exact solutions of Eq. (3.27) by the MSE method without any aid of

symbolic computation software.

Remark 2: Solutions (3.37)-(3.38) and (3.41)-(3.42) have been verified by putting them back

into the original equation and found correct.

14
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4. Physical interpretations of the solutions

In this sub-section, we depict the graph and signify the obtained solutions to the strain wave

equation in microstructured solids for non-dissipative and dissipative. The solution u#, in
(3.17) depends on the physical parameters «;, a5, ,, ¢ and the group velocity @. Now, we
will discus all the possible physical significances for -2<a,, a5, a,, <2, and soliton
exists for |a)|>1 and |a)|<1. For the value of parameters «,, a5, a,, € <0 and |a)| >1,
the solution u,1in (3.17) represents the bell shape soliton and when | 0] | <1 then the solution
u, represents the dark soliton. It is shown in Fig. 1. Also if the values of the parameters are
a,>0, a;, a,, £<0 and | a)| > 1, then the solution u, represents the dark soliton and when
| a)| <1, then the solution u, represents the bell shape soliton. It is shown the Fig. 2. Again,
for a,, a;, a, <0, >0 and |a)| <1, the solution u,in (3.17) represents the multi-soliton
and when | a)| > 1, the solution u, represents the dark soliton. It is plotted in Fig. 3. Again, if
the values of the physical parameters are o, >0, a5, a, <0, £>0 and |a)| >1, then the
solution u, represents the dark soliton and when | a)| <1 then the solution u, represents the

bell shape soliton. It is shown in Fig. 4. We can sketch the other figures of the solution u, for
different values of the parameters. But for page limitation in this article we have omitted
these figures. So, for other cases we do not draw the figures but we discuss for other cases

with the following table:

a, <0, a; <0, a, <0 Dark soliton

a, >0, a;<0, 2, <0 Bell shape soliton

a,>0,a;>0,a, <0 Bell shape soliton
£>0 |o|>1 :

a,>0,a;>0, a, >0 Bell shape soliton

a,>0,a;<0, a2, >0 Bell shape soliton

a, <0, a;>0, 2, <0 Dark soliton

15
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286
287

288

289

290

a, <0, 23>0, 2, >0 Dark soliton
a, <0, a; <0, a4, >0 Dark soliton
a, <0, a; <0, a, <0 Bell shape soliton
a, >0, 0,<0,a,<0 Dark soliton
a;>0,a;>0,a,<0 Dark soliton
a,>0,a,>0,a,>0 Dark soliton
|a)|<1 a,>0,a;<0, ¢, >0 Dark soliton
a, <0, 23>0, 2, <0 Bell shape soliton
a, <0, 23>0, 2, >0 Bell shape soliton
a, <0, a3 <0, ay >0 Periodic bell shape soliton
a, <0, a5 <0, a, <0 ]SB}le;II)es:;Ii):(:) nor Periodic bell
a; >0, ay <0, a, <0 Eﬁﬁ; Iiohton or Periodic dark
a,>0,a,>0,a,<0 Dark soliton
|lo|>1 | a,>0,a;>0,a, >0 Periodic dark soliton
a; >0, a;<0, 0, >0 Periodic dark soliton
a, <0, a3>0, 2, <0 Bell shape soliton
a, <0, ;>0, 0, >0 Periodic bell shape soliton
a, <0, a2y <0, a, >0 Periodic bell shape soliton
e<0 a, <0, a; <0, a, <0 Da_rk soliton or Periodic dark
soliton
a, >0, a5 <0, a, <0 ]S}f;;essh:lli)teo nor Periodic bell
a,>0,a;>0,a,<0 Periodic bell shape soliton
|a)| -1 o, >0, a5 >0, a, >0 ]:lle;Il)essll(;illftZ nor Periodic bell
a,>0,a;<0, 2, >0 Bell shape soliton
a, <0, a;>0, a, <0 Periodic dark soliton
a, <0, a3 >0, ay >0 IS)OaEE) rsloliton or Periodic dark
a, <0, a2y <0, a, >0 Dark soliton

Also the soliton u, in (3.18) depends on the parameters ¢, 5, a4, € and @. Now, we will
discus all the possible physical significances for -2 <¢«,, a5, a,, € <2, and soliton exists
for |@|>1 and |w|<l. For the value of parameters contains «, a3, a4, €>0 and

| a)| >1, then the solution u,in (3.18) represents the singular dark soliton and when | a)| <1
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312

then the solution u, represents the singular bell shape soliton. It is shown in Fig. 5. Also, for
a,, ay, a, <0, >0 and |a)|>1, then the solution u,in (3.18) represents the periodic
singular dark soliton and when | 0] | <1 then the solution u, represents the periodic singular
bell shape soliton. It is plotted of the Fig. 6. On the other hand, the solutions u, in (3.19) and
u, in (3.20) exist for (a3 -a, w2)> 0, £<0 or (a3 -a, w2)< 0, £€>0 when |a)| >1 or
|a)| >1. For the value of the parameters are o, =-1.25, a; =—0.1, o, =-2, £ =—1, when
®=0.96, the solution u; in (3.19) represents the dark soliton and «, =-1.5, a3 =-0.1,
a,=2,&=-1, when w=1.5, the solution u, represents the periodic soliton. It is shown in
Fig. 7. Again, the travelling wave solution us in (3.23) represents the bell shape singular
solitons for o, =-l1=a;, a, =1, =05, w=-1.5 and w=0.5 respectively, in Fig. 8 and
Fig. 9 from u, in (3.24) represents the bell shape soliton, when @ =1.5 and the dark soliton ,
when @ =-0.75. In Fig. 10, we have plotted of the periodic bell shape and dark type soliton
for oy =ay;=-125, a, =1, €¢=0.7, w=-12 and o, =a;=-125, a, =1, €¢=-0.7,
@ =0.25 respectively to the solution of u, in (3.25) and Fig. 11 plotted the periodic dark
type and bell shape soliton for o =1.25, a;=-125, a,=1, £€=0.7, w=-12 and
oy =a;=-125, a, =1, ¢=-0.7, @=-0.25 respectively to the solution of ug in (3.26).
Fig. 12 and 13 represent the kink shape solutions u, given in (3.37) are respectively, for
a =1, a,=1, ay=-15, a,=-1, €=05 and a,=-1, a,=1, ay;=-1.5, a,=-1,
& =0.5 respectively, when w==xy, and for o, =1, «, =1, a3 =-1.5, a,=-1, €=0.5
and o, =-1, a,=1, a;=-1.5, a,=-1, &=0.5 respectively, when @=xu,. Also
sketch the figures 14 and 15, singular bell shape solutions u,, in (3.38) for o, =1, «, =1,

ay;=-15 a,=-1, =05 and o =-1, a,=1, a;=-15 a,=-1, =05
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328

respectively, when w==*y, and for o, =1, a,=1, a;=-15 a,=-1, ¢=0.5 and
o =-1, a,=1, a;=-15, a,=-1, &=0.5 respectively, when @ ==yu,. On the other
hand, Fig. 16 and 17 are singular bell and dark type solitons u,, in (3.41) for o, =1, a, =1,
ay;=1, a,=1, ¢=05and a,=-1, a,=1, a;=1, a,=1, &=0.5 respectively, when
w=%60, and for o, =1, a,=1, a;=1, a,=1, €=05 and a,=-1, a,=1, a;=1
a4 =1, £ =0.5 respectively, when @ ==6,. Also, draw the Figures 18 and 19 are kink shape
solitons u;, in (3.42) for o, =1, a,=1 a;=1, a,=1, =05 and a, =-1, «a, =1,
ay=1, a,=1, ¢=0.5 respectively, when w=%6, and for o, =1, a,=1, a;=1,
a,=1, =05 and o, =-1, a,=1 ay;=1, a,=1, £¢=0.5 respectively, when w==6,.
All figures are drawn within —10 < x, ¢ <10.

We can sketch the other figures or discuss the solutions u, to u,, for different values of the

parameters. But for page limitation in this article we have omitted these figures in details.

Fig. 1: Sketch of the solution u; in (3.17) for a; =-0.001, a3 =4, =& =w=-1.5 and
a; =-0.001, a3 = a, =& =w=-0.75 respectively.
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329 "-".-'_Il

g
330 Fig. 2: Plot of the solution u; in (3.17) for o =0.001, a3 =, =6 =w=-1.5 and
331 a; =0.001, a; =a, = =w=-0.75 respectively.

332
333 Fig. 3: Sketch of the solution u; in (3.17) for a; =3 =, =-1.2, e =@ =0.5 and
334 o =ay=a,=-12,=0.5 »=1.25 respectively.
335
336
T :
i
I.-I"\l"-.':
-H'I"l.-:
s &
TR

337 s u

338 Fig. 4: Sketch of the solution u; in (3.17) for ¢, =0.75, a3 =, =-1.2, £¢=0.5, =125 and

339

o, =075 a3 =a, =-12,5=0.5 o=0.5 respectively.
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340
341 Fig. 5: Sketch of the singular dark and singular bell shape soliton u, in (3.18) for ; = a3 =a,4 =0.5,

342 =075, w=-15 and ;= a3 =a, =05, £=0.75, ©=-0.25 respectively.
343
344

345
346

347 = 'l i
348 Fig. 6: Sketch of the periodic singular soliton u, in (3.18) for o, = a3 =, =-1.5, £¢=0.75, @=-1.5 and

349 o =ay=a,=-15, ¢=0.75, @=-0.25 respectively.
350

351
352 Fig. 7: Sketch of the solution u5 in (3.19) and the solution u, in (3.20) for o =-1.25, a; =-0.1,
353 a,=-2, e=-1, =096 and ; =-1.5, a3 =-0.1, o, =2, ¢ =-1, @ =1.5 respectively.
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354
355 Fig. 8: Sketch of the solutions us in (3.23) for oy =-1=¢3, a, =1, €=0.5, w=-1.5 and ®=0.5
356 respectively.

357
358 Fig. 9: Sketch of the bell shape soliton and dark soliton u4 in (3.24) for o; = a3 = a4
and @ =—-0.75 respectively.

359
360 e
361 Fig. 10: Sketch of the solutions u, in (3.25) for oy =a3 =-125, a4y =1, €=0.7, w=-1.2 and
362 oa=a3;=-125, a,=1, £¢=-0.7, @ =0.25 respectively.
363 e Tt
364 Fig. 11: Sketch of the solutions ug in (3.26) for oy =1.25, a;=-125, a, =1, €=0.7, ®=-1.2 and
365 oy =0a;=-125, a,=1, £¢=-0.7, @=-0.25 respectively.
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366 o
367  Fig

368

. 12: Kink shape soliton obtained from ug in (3.37) for o; =1, a, =1, a3 =-1.5, a4, =-1, £=0.5 and

o = —1_,_ a, =1, ay=-15, a, =-1, £=0.5 respectively, when o =+y, .

369
370

371

372
373

374

Fig. 14: Singular bell shape and anti-bell shape soliton u, in (3.38) for

al = 1, a2 :1, a3 :_1.5,
a,=-1, e=05and o, =-1, a, =1, a3=-1.5, a, =-1, ¢ =0.5 respectively, when @ ==ty .
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376

377
378

379
380

381

382
383

384

Fig. 15: Singular anti-bell shape and bell shape soliton u;, in (3.38) for ; =1, a, =1, a3 =-1.5,

a,=-1, e=05and o, =-1, a, =1, a3=-15, a,=-1, €¢=0.5 reg_pectively, when o =tu,.

b

S [
-k ik
B

Fig. 16: Sketch the singular bell type and anti-bell soliton u,;, in (3.41) for a; =1, a, =1, a3 =1,
ay,=1, €¢=05and o, =-1, a, =1, a;=1, a, =1, £ =0.5 respectively, when o =16,.

Fig. 17: Singular anti-bell shape and bell shape soliton u;, in (3.41) for a; =1, a, =1, a3 =1,

o,=1, e=05and o =-1, a, =1, a;=1 a, =1, ¢=0.5 respectively, when v = £6, .
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Fig. 18: Kink shape soliton u;, in (3.42) for a; =1, a, =1, a3 =1, a, =1, £=05and o, =-1, a, =1,
a3 =1, a, =1, € =0.5 respectively, when o = +6, .

Fig. 19: Kink shape soliton u;, in (3.42) for a; =1, a, =1, a3 =1, a, =1, £=05and ) =-1, «a, =1,
a3 =1, a, =1, & =0.5 respectively, when o = 6, .

5. Conclusions

In this article, we considered the strain wave equation in microstructured solids whose
balance number is two. If the balance number is greater than one, in general the MSE method
does not provide any solution. For this case, we have established the procedure in order to

implement the MSE method to solve NLEEs for balance number two. If the solution of s(&)
consists of polynomial of the wave variable £, it will not be the solitary wave solution, since
it does not meet the condition |u|—> 0 as & — +wo for solitary wave solution. In this case,

each coefficient of the polynomial must be zero. This constraint is crucial to solve NLEEs for
higher balance number. By using this achieved process, we solved the above mentioned

NLEEs for non-dissipative case and dissipative case found some new traveling wave
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solutions. When the parameters receive special values, solitary wave solutions are derived

from the exact solutions. We have analyzed the solitary wave properties of the solutions for

different values of the physical parameters via the graphs.
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