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Abstract 6 

 7 

This paper proposes a modified method (MM) for computing initial guess values (IGVs) of a 8 

single exponential class of transcendental least square problems. The proposed method is an 9 

improvement of the already published multiple goal function (MGF) method. Current 10 

approaches like the Gauss-Newton, Maximum likelihood, Levenbreg-Marquardt e.t.c 11 

methods for computing parameters of  transcendental least squares models use iteration 12 

routines that require IGVs to start the iteration process. According to reviewed literature, 13 

there is no known documented methodological procedure for computing the IGVs. It is more 14 

of an art than a science to provide a “good” guess that will guarantee convergence and reduce 15 

computation time. 16 

To evaluate the accuracy of the MM method against the existing Levenberg-Marquardt (LM) 17 

and the MGFmethods, numerical studies are examined on the basis of two problems thats; the 18 

growth and decay processes. The mean absolute percentage error (MAPE) is used as the 19 

measure of accuracy among the methods. Results show that the modfied method acheives 20 

higher accuracy than the LM and MGF methods and is computationally attractive. However, 21 

the LM method will always converge to the required solution given “good” initial values. 22 

The MM method can be used to compute estimates for IGVs, for a wider range of existing 23 

methods of solution that use iterative techniques to converge to the required solutions 24 

 25 
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1. Introduction 29 

Nonlinear problems are regularly encountered in both engineering and physical science 30 

fields. These problems are reformulated into mathematical nonlinear equations which are  31 

solved using existing optimization methods like the Expectation-Maximum (EM) algorithm, 32 
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Gauss-Newtons methods e.t.c. which employ iteration routines in order to converge to the 33 

optimal solution.When practical and theorectical nonlinear problems are formulated, the final 34 

step is always finding the solutions of the subsequent simultaneaous nonlinear equations [1]. 35 

The equations can not be solved explicitly for exact solutions. However, a sufficiently “good” 36 

initial estimate can be provided so that any iterative technique that may be applied will 37 

converge to the required optimal solution.It is acknowledged that the word “good” is in itself 38 

vague, but theproposed  modified method (MM) will provide solutions for initial guess values 39 

(IGVs) that will always guarantee convergence to the required optimal solution. Most of the 40 

current methods of solution are very sensitive to initailization and this serves as a bench mark 41 

for our study to develop systematic and algorithmic procedures for estimating IGVs. 42 

Exponential equations are a class of nonlinear problems that are mainly solved by 43 

linearisation through algorithmic procedures. Traditional methods for solving nonlinear 44 

problems transform the nonlinear function into a linear one using the approximation of the 45 

well-known Taylor expansion [2]. 46 

To solve nonlinear least square problems in the applied sciences and mathematics,  numerical 47 

iteration methods are usually applied such as the Newton method [3], Gauss-Newton 48 

method[2] which transform the integral equations into linear systems of algebraic equations 49 

which can be solved by direct or iterative methods. The iterative methods require provision of 50 

IGVs to compute the optimal solutions.Other methods in current use are; derivative free 51 

methods, direct optimization and the Levenberg-Marquardt (LM) which is more preferred 52 

because of it robustness [4]as it always finds a solution even if it starts far from the required 53 

minimum. In this paper amethod to the problem of finding IGVs, is presented. The algorithm 54 

is described in (modification of the multiple goal function) section and its performance is 55 

compared with that of Levenberg-Marquardt [5,6] and the multiple goal function (MGF) 56 

[7],methodsfor a given class of exponential problems.First an analytical nature of the 57 

approach is discussed and numerical studies to evaluate the performance of the MM method 58 

against the conventional LMand MGF methods is examined.  59 

2. Formulation of the problem 60 

2.1. General 3-parameterised exponential model 61 

We consider a generalised three parameter single exponential model of the form:  62 
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,)( γα β += x
exf        (2.1) 63 

where α , β  and γ  are the unknown parameters, whose initial guess values must be 64 

provided. 65 

The goal function for the determination of  unknown parameters α , β  and γ : 66 
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Partially differentiating Eq.(2.1)with respect to α , β  and γ leads to the following system of 68 

equations that are transcendental with respect to the unknown parameters: 69 
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The system of Eqs. (2.3–2.5) can not be solved explicitly to give closed form solutions 73 

because, each side of the equations contains unknowns in every term. However, their 74 

methods of solution are well known like the Newton methods, secant methods, likelihood 75 

methods etc, but all these methods demand the use of iterative procedures which require 76 

IGVs to start the iteration process. 77 

In this paper a method thatcould be used to estimate IGVs which guarantee convergence to 78 

the required solutionsand lead to a shorter computation time is formulated.According to the 79 

reviewed literature, there exists no known algorithms and systematic approaches for 80 

computing the IGVs. The method of trial and error is oftenly employed and in some cases the 81 

underlying problem is estimated as a linear model and identified using the ordinary least 82 

squares techniques ignoring the nonlinearities in the model. The computed parameters are 83 

then used as IGVs [8]. 84 
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3. Methodology 85 

The main idea is to transform the original transcendental problem into a new problem which 86 

is linear with respect to new unknown parameters. Differential methods are applied in order 87 

to linearise the problem and the problem solved using ordinary least squares techniques via 88 

integral methods. The multiple goal function method proposed by [7], is modified to a single 89 

goal function to estimate some of the required parameters. 90 

3.1. The Multiple goal function (MGF) method 91 

Under this section, we examine the MGF, this method provides solutions of transcendental 92 

problems via two stages of optimisation of the initial problem. Optimisation is achievedby 93 

formulating an objective function at each stage and subsequently solving the normal 94 

equationsfor the unknown set of parameters using ordinary least squares techniques. To 95 

improve on the accuracy ofestimatability of this method (MGF), a new method is proposed 96 

that applies  optimisation of an objective function at one stage to obtain some of the unknown 97 

parameters and continues to solve for the rest of the unknown parameters using simple 98 

algebraic formulations of the initial problem. The solutions are then applied as IGVs to start 99 

the iteration process to a range of existing optimisation methods that use iteration procedures 100 

to estimate the required solution. 101 

Considering the first and second derivatives of Eq.(3.1): 102 

,)( x
exf

βη=′  with ,αβη =       (3.1) 103 

taking the second derivative and making approprate substitutions, we have;  104 

).()( xfxf ′=′′ β        (3.2) 105 

Integrating Eq.(3.2)over the region [ ]xa; yields: 106 

.0)()()()( =+′−−′ afafxfxf ββ      (3.3) 107 

Letting )()( afaf ′−= βλ  in Eq.(3.3), we obtain: 108 

.0)()( =+−′ λβ xfxf       (3.4) 109 

Integrating Eq.(3.4), over the region [ ]xa;  again yields: 110 
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a
dfxI .)()( ξξ   (3.5) 111 
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When a dataset ( ))(, ii xfx  for ni ,...,1=  is available, it is possible to obtain a system of linear 112 

equations represented by Eq. (3.6); 113 

,21 CXXY +−= λβ                                                                   (3.6) 114 

where 
iii xXxIXxfY === 21 ),(),(  and )()( aafC λ+= ; parameters λβ ,  and C are 115 

estimated by solving the system of equations represented by Eq. (3.6)using ordinary least 116 

squares methods. 117 

FortheMGFmethod estimates λ̂ and Ĉ  are considered as nuisance parameters and 118 

subsequently ignored, only β̂  is considered for further analyses. After estimating β̂  from 119 

Eq. (3.6), the original problem can be reformulated as a system of linear regression equations: 120 

13)( CXxf i += α  for ix
eX

β̂
3 = and .γ=C (3.7) 121 

The unknwon parameters α  and 1C  are as well estimated using the ordinary least squares 122 

methods. 123 

4. Modification of the Multiple goal function algorithm (MM) 124 

The MGF method is based on the idea that the unknown parameters are estimatedfrom two 125 

formulated objective functions ofEqs. (3.6&3.7)from which normal equations that have 126 

closed form solutions are formed. 127 

One major disadvantage of the MGF method is that numerical differentiation procedures are 128 

done several times which leads to greater loss of information or data at these subsequent 129 

stages. This eventual loss of data compromises the accuracy of the MGF method. Thecopious 130 

differentiation procedures may be minimised as follows. 131 

Consider Eq. (3.6), rewritten as: 132 

  .0)()( =−+− CxxIxf λβ         (4.1) 133 

Estimation of the parameters λβ ,  and C was done in Eq. (3.6)using ordinary least squares 134 

methods. Now considering that: 135 

,)( Caaf =+ λ  for )()( afaf ′−= βλ        (4.2) 136 

 137 

It is then clear that: 138 

UNDER PEER REVIEW



6 

 

  ( ) λλβ =′−− )(afaC ,           (4.3) 139 

solving for )(af ′  from Eq. (4.3), we obtain: 140 

.)( λλββ −−=′ aCaf           (4.4) 141 

Therefore, )(af ′  and )(af  are now known. 142 

Taking the first derivative of the original problem inEq. (2.1),we have: 143 
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implying; 145 

  .)( a
eaf

βαβ=′       (4.6) 146 

Equating Eq. (4.4) and Eq. (4.6), and solving for α  we obtain: 147 

.)( a
eaC

β

β

λ
λα −−−=       (4.7) 148 

For ax =  in Eq. (2.1) and equating the result with Eq. (4.2)yields: 149 

a
eaC

βαλγ −−= .                         (4.8) 150 

Substituting for α  in Eq. (4.8) from Eq. (4.7), and simplifying, we obtain: 151 

.
β

λ
γ =         (4.9) 152 

Hence the unknown parameters ( βα , and γ ) in Eq. (2.1) are identified from Eqs. (4.7, 3.6, 153 

&4.9) respectively. The estimated parameters could then be used as initial guess values to a 154 

wider range of the single exponential class of problems. 155 

 156 

5. Performance of the algorithms 157 

The criterion used to evaluate the performance of the methods (i.e LM, MGF and  MM) was 158 

that; two datasets were generated which simulated the growth and decay processes. The 159 
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methods were then applied to estimate the known theoretical models in each case.The 160 

measure of performance was the mean absolute percentage error (MAPE). This is a measure 161 

of accuracy commonly prefered because of its suitability in many practical and theoretical 162 

instances [9,10]. Table 2& 4summarise the performance of the three methods on the basis of 163 

the known models considered, and Tables 1& 2 show the estimated parameters from the 164 

respective methods. The main focus on the performance of the three methods was on how 165 

well each of them estimated the already known (exact) model parameters ( βα , &γ ) in either 166 

problem. 167 

parameter Exact values Modified 

Method (MM) 

Multiple goal 

function (MGF) 

Levenberg-

Marquardt 

Method (LM) 

α 0.2 0.219092 0.177825 0.156527 

β 1.1 1.095585 1.114730 1.135970 

γ 15 14.98090 16.43410 17.03950 

Table 1: Comparison of the parameter estimates using the Modified, the Multiple goal function and the 168 

Levenberg-Marquardt methods with the Exact values for the growth model. 169 

 170 

 171 

MAPE for the Modified 

Method 

MAPE for the Multiple goal 

function 

MAPE for the 

Levenberg-Marquardt 

3.36 7.33 12.87 

Table 2: The mean absolute percentage errors of the Modified Method, the Multiple Goal Function and the 172 

Levenberg-Marquardt method on growth model. 173 

 174 

parameter Exact values Modified 

Method (MM) 

Multiple goal 

function (MGF) 

Levenberg-

Marquardt 

Method (LM) 

α 10.2 10.19991 10.18640 10.06450 

β -1.1 -1.095585 -0.104719 -1.029130 
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γ 15 15.00009 14.91630 14.89790 

Table 3: Comparison of the parameter estimates using the Modified, the Multiple goal function and the 175 

Levenberg-Marquardt methods with the Exact values for the decay model.  176 

 177 

MAPE for the Modified 

Method 

MAPE for the Multiple goal 

function 

MAPE for the 

Levenberg-Marquardt 

0.13 30.39 2.82 

Table 4: The mean absolute percentage errors of the Modified Method, the Multiple Goal Function and the 178 

Levenberg-Marquardt method on the decay model. 179 

 180 

6. Discussion and conclusion  181 

From a comparision of the current MM method and results obtained on the same problems 182 

(growth and dacay models) by the existing and general methods (i.e MGF and LM),  it is 183 

clear that the MM method has a comparative advantage over the other methods see Tables 184 

2& 4. The MM method has an accuracy of about 2 and 4 times that of the MGF and the 185 

commonly applied and more robust LM methodrespectively on estimating the growth model. 186 

We also examined the performance of the MM method on the decay model, and it was found 187 

that its performance was far more appealing on identification of the decay model than the 188 

growth model parameters.  It exhibited an accuracy of about 234 and 22 times that of the 189 

MGF and LM methods respectively. The authors have compared the MM method with their 190 

earlier work using the MGF and the existing LM methods and found that the MM performs 191 

better in estimating solutions (IGVs) than other methods. It is thus recommended that results 192 

from the modified method be used as initial guess values to a broader range of exponential 193 

models which fall in the class of 3-parameter problems. 194 
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