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Abstract
In the present days of modern cosmology it is assumed that the main ingredient to cosmic energy
presently is vacuum energy with an energy density ϵvac that is constant over the cosmic evolution.
In this paper here we show, however, that this assumption of constant vacuum energy density is
unphysical, since it conflicts with the requirements of cosmic thermodynamics. We start from the
total vacuum energy including the negatively valued gravitational binding energy and show that
cosmic thermodynamics then requires that the cosmic vacuum energy density can only vary with
cosmic scale R = R(t) according to ϵvac ∼ R−ν with only two values of ν being allowed, namely
ν1 = 2 and ν2 = 5/2. We then discuss these two remaining solutions and find, when requiring
a universe with a constant total energy, that the only allowed power index is ν1 = 2. We discuss
the consequences of this scaling of ϵvac and show the results for a cosmic scale evolution of a
quasi-empty universe like the one that we are presently faced by.
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1 Introduction
We start this paper asking why at all should a vacuum gravitate or influence spacetime geometry?
This question is perhaps worth to be asked, since, if vacuum, expressis verbis, represents ’nothing’ in
a physical sense, then it should not do anything, especially should not gravitate, unless it is wrongly
defined. Modern physics nowadays argues, however, that a vacuum cannot be energy-less, but is
loaded with energy, or, due to the energy-mass equivalence, is mass-loaded. Masses, on the other
hand, do in general gravitate, unless something else compensates for that. But how could sources of
gravity be compensated, unless perhaps by anti-masses which are not known to exist?
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The General Relativistic action of a vacuum in general is taken into account by a fluid-like
hydrodynamical energy-momentum tensor T vac

µν which describes how the vacuum, due to its pressure
pvac and its mass energy density ρvac, acts as source of spacetime geometry (see e.g. [Goenner
(1996)]). If in addition vacuum energy density ϵvac = ρvacc

2 is assumed to be constant, as done in
present-day standard cosmologies (see [Perlmutter et al. (1999)]; [Bennett (2003)]), then this induces
the relation pvac = −ϵvac (see e.g [Peebles and Ratra (2003)] and leads to the following geometrical
source tensor (see e.g. [Overduin and Fahr (2003)]) T vac

µν = ρvacc
2gµν , where gµν denotes the metric

tensor.
This term T vac

µν , since being isomorphal, can be taken together with the term due to Einstein’s
cosmological constant Λ0 ([Einstein (1917)]). If both terms are placed on the right-hand side of the
GRT field equations, while Einstein placed his term on the left hand side, they can be put together
representing an ’effective’ cosmological constant Λeff given by [Overduin and Fahr (2001)] and [Fahr
(2004)].

Λeff =
8πG

c2
ρvac,0 − Λ0. (1.1)

Now one can draw the following conclusion: A completely empty, matter-free space, not doing
anything in terms of gravity, is realized, if ,evident from the above, Λeff just vanishes, i.e. the
cosmological term Λ0 just compensates the vacuum energy density of empty space whatever maybe
its value (e.g. see [Zeldovich (1968)] and [Carrol (1992)]).

Interestingly, very similar ideas have come up in papers by Sola (see [Solà (2013)] and [Solà
(2014)]) who expresses the fact that in order to settle down the spacetime geometry of a pure
vacuum to a nongravitating Minkowskian spacetime within a covariant general-relativistic field theory
the effective vacuum energy of this empty space has to vanish.

In the presence of real matter the argumentation, however, is much more complicate as we have
discussed at several places in the literature ([Overduin and Fahr (2001)]; [Fahr (2004)]; [Fahr and Heyl
(2007a)]; [Fahr and Heyl (2007b)]; [Fahr and Sokaliwska (2012)]). Especially it is then highly question-
able whether under such conditions a constant vacuum energy density can at all be expected as an
option.

If under these perspectives it could be assumed, that only the energy difference between the
matter-polarized and the empty vacuum gravitates then some interesting new conclusions could be
drawn. It then means that in a matter-filled universe the effective quantity representing the action of
the vacuum energy density is given by:

Λeff =
8πG

c2
(ρvac − ρvac,0). (1.2)

The above formulation expresses that in a matter-filled universe only the difference between the
values of the vacuum energy densities ρvac,0 of empty space and ρvac of matter-polarized space
gravitates, i.e. the spacetime geometry only reacts to the difference of these vacuum energies.

Even under these new prerequisites it is nevertheless not the most natural assumption, that
vacuum energy density ϵvac = ρvacc

2 should be considered as a time-independent quantity. This
is because the unit of volume is not a cosmologically relevant quantity, and vacuum energy density
neither is. It would probably appear more reasonable to assume that the energy load of any homolo-
gously comoving proper volume does not change with cosmic expansion, i.e. that rather just this
proper-energy is constant. This demand, however, means that the true constant quantity, instead of
the vacuum energy density ϵvac, is

evac = ϵvac
√
−g3d

3V (1.3)

where g3 is the determinant of the 3d-space metric which in case of a Robertson-Walker geometry
is given by
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g3 = g11g22g33 = − 1

(1−Kr2)
R6r4 sin2 ϑ (1.4)

with K denoting the curvature parameter, the R = R(t) determining the time-dependent scale of
the universe, and the differential 3-space volume element in normalized polar coordinates given by

d3V = drdϑdφ. (1.5)
This then leads to the following request

evac = ϵvac

√
R6r4 sin2 ϑ/(1−Kr2)drdϑdφ =

ϵvac
R3

√
1−Kr2

r2 sinϑdrdϑdφ = const. (1.6)

which evidently leads to a variability of the vacuum energy density ϵvacin the form

ϵvac = ρvacc
2 ∼ R(t)−3. (1.7)

In the following paper we shall now throw some new light on the variability of ϵvac that must be
expected. We therefore study the behavior of the vacuum energy density ϵvac with the scale R(t) of
the universe from a thermodynamical view.

2 Thermodynamics of the cosmic vacuum
In the following cosmological considerations we treat the cosmic vacuum by quantities denoting
its vacuum energy density εvac and its associated vacuum pressure pvac, like done in case of a
hydrodynamic fluid which in general relativity theory is described by the following fluid-type hydro-
dynamical energy-momentum tensor (see e.g [Goenner (1996)]; [Overduin and Fahr (2001)]; [Blome
(2002)]; [Fahr (2004)])

T vac
µν = (ρvacc

2 + pvac)UµUν − pvac ∗ gµν (2.1)
where εvac = ρvacc

2 and pvac are energy density and pressure of the vacuum, Ui denote the
components of the fluid four-velocity, and gµν is the four-space metric tensor.

In order to use the above energy-momentum tensor in the frame of the general relativistic field
equations one needs to know, how ρvac and pvac are related to each other and how they are dependent
on spacetime coordinates. For that purpose we want to use the well known thermodynamic equation
that relates the internal volume energy with the work expended at the expansion of that volume. In
its easiest form for a Robertson-Walker symmetric universe with curvature K = 0 this equation for a
sphere of scale R = R(t) is given by (see [Goenner (1996)]):

4π

3

d

dR
(εvacR

3) = −pvac
4π

3

d

dR
R3. (2.2)

Analogously to a star at its contraction the internal volume energy, irrelevant whether it is vacuum-
or matter-filled, should, however, be completed by the gravitational self-binding energy, since a
vacuum that is energy-loaded evidently is a source of internal gravity which at all makes it cosmologi-
cally relevant as source of cosmic geometry. If we include the negatively valued gravitational self-
binding energy (see [Fahr and Heyl (2007a)]; [Fahr and Heyl (2007b)]) into the total internal energy
of a cosmic sphere with radius R, then instead of the above relation one obtains the following more
complicate thermodynamic equation:

d

dR
[
4π

3
εvacR

3 − 8π2G

15c4
(εvac + 3pvac)

2R5] =
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−pvac
4π

3

d

dR
R3 (2.3)

which now instead of Eq. (2.2) should define the relation between εvac and pvac and both their
dependences on the scale parameter R = R(t) which is a function of the cosmic time t.

As evident, in this highly symmetric FLRW universe both quantities, i.e. εvac and pvac, can only
depend on the scale parameter R(t). We now try to solve the above equation, following the same
way as already used in the case of the more simple, uppermost thermodynamic Eq. (2.2), namely
assuming a power-law dependence of εvac on R in the form εvac ∼ R−ν with an undefined power
index ν, and then obtaining for the vacuum pressure the relation

pvac = −3− ν

3
εvac. (2.4)

Here so far all power indices, especially the cardinal index values ν = 0, 1, 2, 3, were equally
allowed, none of them being apriori excluded, however, the R-dependence of pvac and εvac turned
out to be identical.

If we now make use of these earlier results (Eq. (2.4), but try to find solutions of the extended
thermodynamic Eq. (2.3) on the basis of these earlier findings we then obtain:

−4π

3

3(3− ν)

3− ν
pvacR

2 = −3
4π

3
pvacR

2+

8π2G

15c4
d

dR
[(εvac + 3pvac)

2R5] (2.5)

which, since the terms left and right of the identity sign cancel, after replacing εvac by pvacwith
Eq. (2.4) leads to the requirement

0 =
(6− 3ν)2

(3− ν)2
d

dR
(p2vacR

5). (2.6)

This equation for a completed thermodynamics now evidently is only solved by two special values
of ν, i.e. the requirements:

a: ν = ν1 = 2

and
b: p2vacR5 = const, i.e. by ν = ν2 = 5/2

thus now determining, compared to the earlier result, a much more restricted set of physically
possible dependences of pvac and εvac on R.

3 Do there exist two competing solutions?
From the above derivation the two solutions ν = ν1 and ν = ν2 are competing as equally justified,
and one could think of taking a representation of the form

εvac = ε0,1(R/R0)
−ν1 + ε0,2(R/R0)

−ν2 (3.1)

as the most general solution. However, without any concrete, specific physics behind the different
forms, how εvac reacts to cosmic scale expansion, this form of a solution is not really satisfying. Thus
we try to restrict the possible power indices even more by looking at this question from another view.

Requiring a universe where in every instant the positively valued vacuum energy is compensated
by its gravitationally induced self-binding energy, then , in addition to the above thermodynamic
requirement, one has to also fullfill the following relation (see [Fahr and Heyl (2007a)]; [Fahr and Heyl
(2007b)]) for a vanishing total vacuum energy
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4π

3
(εvac + 3pvac)R

3 =
8π2G

15c4
[(εvac + 3pvac)

2R5]. (3.2)

We now solve this quadratic equation with respect to the pressure pvac and get the following two
solutions:

pvac,1 = −1

3
εvac (3.3)

and

pvac,2 =
1

3
(

5c4

2πGR2
− εvac). (3.4)

Insertion of Eq. (3.3) or Eq. (3.4) into Eq. (2.3) results in both cases in one and the same
differential equation for the energy density εvac given by:

dεvac
dR

R+ 2εvac = 0 (3.5)

which has the unique solution:

εvac = εvac,0
R2

0

R2
∼ pvac,1,2 (3.6)

with εvac,0 the vacuum energy density at a scale parameter R0, e.g. at the present cosmic time
t0. Using εvac = ρvacc

2 we finally get from Eq. (3.6) for the associated cosmic mass density ρvac of a
pure vacuum-energy-dominated universe which scales according to R−2:

ρvac = ρvac,0
R2

0

R2
. (3.7)

Similar results, however derived independently from very different theoretical reasons, have
already been published by [Basilakos (2009)], [Solà (2013)], [Basilakos (2013)] and [Solà (2014)]. In
these papers it has been discussed that strictly keeping to covariance requirements of the underlying
general relativistic field equations one can allow for a time-dependence of the inherent cosmic vacuum
energy density ρvac and, as a leading term, one should preferably consider the following time-depen-
dence of the vacuum energy density ρvac = ρvac,0 + α · H2(t), where H = H(t) = Ṙ/R denotes
the time-dependent Hubble constant within a Friedman-Lemaitre cosmology. As the above authors
emphasize, this new setting will help solving many outstanding problems in the present-day cosmology
like triggering a smooth transition from an initial inflationary expansion powered by very strong vacuum
energy density into a present-day smooth inflation at very low vacuum energy densities of the order
of ρvac,0 ≃ 10−29g/cm3.

A similar attempt to subject the field equations to more general scale-invariance requirements
has led [Scholz (2009)] on the basis of a Weylian scalar-tensor theory also to a term which acts
equivalent to vacuum energy density and which is varying with (1/R2) exactly like derived in our
above approach. The question may, however, come up here with concern to the justification of a
scale-invariance requirement applied to the GRT field equations. Nevertheless, there are hints from
many sides that a scale- or time-dependent vacuum energy term ρvac = ρvac(t) seems to make much
sense in cosmology.

4 Friedmann-Lemaı̂tre equations for a R−2-scaling of ρvac
The Friedmann equations provide a relationship between the cosmic scale R, its first and second
time derivatives Ṙ and R̈ on one hand, and the cosmic mass density ρ and its associated pressure p
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on the other hand. In the following we investigate a pure vacuum energy filled universe with curvature
K = 0. The Friedmann equations are then given by:

H2(t) =
Ṙ2

R2
=

8πG

3
ρvac (4.1)

and

R̈

R
= −4πG

3c2
(ρvacc

2 + 3pvac) (4.2)

with H(t) the time dependent Hubble parameter. Insertion of the R−2-dependent equivalent
mass density of the vacuum energy given by Eq. (3.7) into Eq. (4.1) leads to:

H2(t) =
Ṙ2

R2
=

8πG

3
ρvac,0

R2
0

R2
(4.3)

which provides the following result for the expansion velocity Ṙ of the scaling factor R:

Ṙ =

√
8πGρvac,0

3
R0 = const. (4.4)

and thus, if we require R(t = 0) = 0:

R =

√
8πGρvac,0

3
R0t. (4.5)

We now look at the 2. Friedmann equation Eq. (4.2). The calculated pressure in eq. Eq. (3.3)
results in a cosmic acceleration which is simply zero:

R̈ = −4πG

3c2
(ρvacc

2 + 3pvac,1)R =

−4πG

3c2
(ρvacc

2 − 3
1

3
ρvacc

2)R = 0. (4.6)

However, the pressure in Eq. (3.4) leads to the following expression:

R̈ = −4πG

3c2
(ρvacc

2 + 3
1

3

5c4

2πGR2
−

3
1

3
ρvacc

2)R = −10c2

3R
. (4.7)

The result of Eq. (4.7) is in discrepancy with the constant expansion velocity Ṙ in Eq. (4.4) which
follows from the 1. Friedmann equation which itself does not depend on the pressure. Thus, since
a constant Ṙ cannot be realized with Eq. (4.7), we can conclude that the pressure in Eq. (3.4) and
its associated acceleration in Eq. (4.7) are of course mathematical solutions of our thermodynamical
equations but not physical ones which are realized in a cosmos with a vacuum energy density which
scales according to R−2 and which always leads to Ṙ = const., i.e. R̈ = 0. With other words, the
correlation between a vacuum energy density ϵvac ∼ R−2 and its associated pressure pvac is given
by (equation of state):

pvac = −1

3
ϵvac. (4.8)
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5 Consequences of the R−2-scaling of ρvac and conclusions
With the results of the previous chapter for a matter-free, empty universe dominated by pure vacuum
energy and with a curvature parameter K = 0 (i.e. a flat vacuum universe) we now look at the Hubble
parameter H(t) which is given for this universe by (see Eqs. (4.4) and (4.5):

H(t) =
Ṙ

R
=

√
8πGρvac,0

3
R0√

8πGρvac,0

3
R0t

=
1

t
(5.1)

and for the present cosmic time t0 leads to t0 = 1/H0(t0) ≈ 1, 37 · 1010yrs with the presently
accepted Hubble parameter H0 ≈ 72km/s/Mpc (see Bennett et al. 2003).

Furthermore, we can now try to calculate the equivalent of the total, global vacuum energy
content of the universe, i.e. the mass content Mvac of such an universe assuming that the extension
of the visible universe is given by the so-called Hubble radius RH , defined as that cosmic distance
where the cosmic recession velocity Ṙ equals the velocity of light c and given by:

RH =
c

H(t)
= ct (5.2)

with H(t) given by Eq. (5.1). Now, in addition Eq. (4.1) leads us to the cosmic density:

ρvac =
3H2

8πG
=

3

8πGt2
(5.3)

which is nowadays (t = t0):

ρvac,0 =
3H2

0

8πG
=

3

8πGt20
≈ 10−26 kg

m3
. (5.4)

Hence we can express the present vacuum mass of the universe by:

Mvac =
4π

3
ρvac,0R

3
H =

4π

3

3

8πGt20
c3t30 =

c3

2G
t0 ≈ 1053kg ≈ 1080mp (5.5)

with mp as the mass of the proton. Interestingly, the Eqs. (5.4) and (5.5) show well-known
numbers, quite familiar to nowadays astronomers, namely just numbers for the presently assumed
critical mass density of our universe and the present mass content of the visible universe, respectively.
This may in first glance appear to be completely casual and be highly astonishing, since with the
above we calculated density and mass of a cosmic vacuum on the basis of a R−2-scaling vacuum
energy density, while the numbers that we got are typical for the matter content of our present
universe.

These above results are, however, not judged by the authors of this paper to be an numerical
artifact, but may have the following important reason: We can take Eq. (3.7) to calculate the equivalent
mass density of the vacuum energy density of the very early universe, i.e. at the Planck time tp or the
Planck length RH(tp) = rp = ctp, thereby expressing the reference scale R0 by the present Hubble
radius RH,0 = ct0 (according to Eq. (5.2)) and get:

ρvac(rp) = ρvac(tp) = ρvac,0
R2

H,0

r2p
=

ρvac,0
ct20
ct2p

= ρvac,0
t20
t2p
. (5.6)
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If we now substitute ρvac,0 by 3/8πGt20 (ref. Eq. (5.4)) then Eq. (5.6) can be written as:

ρvac(rp) = ρvac(tp) =
3

8πGt20

t20
t2p

=
3

8πGt2p
. (5.7)

When we replace the Planck time tp = rp/c =
√

~G/c5 we finally get the following formula:

ρvac(rp) = ρvac(tp) =
3

8π

c5

~G2
= ρp (5.8)

which is identical to the Planck density ρp defined by the ratio of a half Planck mass 1
2
mp =

1
2

√
~c/G and the Planck volume 4π

3
r3p with the Planck length rp =

√
~G/c3. This means that the

equivalent vacuum mass density which scales according to R−2 in our model can be described as a
scaling Planck density ρp. In fact, we can re-write Eq. (5.3) by replacing the factor 3/8πG using Eq.
(5.8) and get:

ρvac(t) =
3

8πGt2
= ρp

~G/c5

t2
= ρp

t2p
t2

(5.9)

where the Planck time tp =
√

~G/c5 is now the reference time. The ratio ρvac,0/ρp is then simply
given by:

ρvac,0
ρp

=
t20
t2p

≈ ·10−122 (5.10)

and also is a well-known discrepancy factor with respect to the ratio of the present vacuum mass
density on one hand and the theoretical value of the vacuum mass density that follows from field-
theoretical calculations on the other hand ([Zeldovich (1968)] and [Weinberg (1989)]). Thus we can
conclude, that this discrepancy vanishes for a vacuum energy density that scales according to R−2

as shown in this paper.
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Solà, J. (2013). arXiv:1306.1527.
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