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ABSTRACT  9 

 

Bianchi type-IX space-time have been obtained when universe is filled with perfect fluid in 

)(Rf  theory of gravity. Here, it is considered in the framework of )(Rf  theory of gravity 

when the source for energy momentum tensor is a perfect fluid. The cosmological model is 

obtained by using the condition that expansion scalar (θ ) proportional to the shear scalar 

(σ ).The physical and geometrical properties of the model are also discussed. It is observed 

that the scale factors and volume of the model vanishes at initial epoch and increases with 

the passage of time representing an expanding universe. We hope to expand our model y to 

explain the structure formation and accelerated expansion for the early universe. 
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1. INTRODUCTION  13 

 14 

Cosmological observations in the late 90’s from different sources such as Cosmic 15 

Microwave Background Radiations (CMBR) and Supernovae (SN Ia) surveys indicate that 16 

the universe consist of 4% ordinary matter, 20% dark matter (DM) and 76% dark energy 17 

(DE) [1-4]. The DE has large negative pressure while the pressure of DM is negligible. Wald 18 

[5] has distinguished DM and DE and clarified that ordinary matter and DM satisfy the strong 19 

energy conditions, whereas DE does not. The DE resembles with a cosmological constant 20 

and scalar fields. The scalar field is provided by the dynamically changing DE including 21 

quintessence, k-essence, tachyon, phantom, ghost condensate and quintom etc. The study 22 

of high redshift supernova experiments [6-8], CMBR [9-10], Large scale structure [11] and 23 



 

 

recent evidences from observational data [12-14] suggest that the universe is not only 24 

expanding but also accelerating. 25 

There are two major approaches according to the problem of accelerating 26 

expansion. One is to introduce DE component in the universe and study its effects. Other 27 

alternative is to modify general relativity termed as a modified gravity approach. We are 28 

interested in a second alternativeone. After the introduction of General Relativity (GR) in 29 

1915, questions related to its limitations were in discussion. Einstein pointed out that Mach’s 30 

principle is not substantiated by general relativity. Several attempts have been made to 31 

generalize the general theory of gravitation by incorporating Mach’s principle and other 32 

desired features, which were lacking in the original theory. Alternative theories of gravitation 33 

have been proposed to Einstein’s theory to incorporate certain desirable features in the 34 

general theory. In the last decades, as an alternative to general relativity, scalar tensor 35 

theories and modified theories of gravitation have been proposed. The most popular 36 

amongst them are Brans-Dicke [15], Nordtvedt [16], Sen [17], Sen and Dunn [18], Wagonar 37 

[19], Saez-Ballester [20] etc. Recently, )(Rf  gravity and ),( TRf  gravity theories have 38 

much importance amongst the modified theories of gravity because these theories are 39 

supposed to provide a natural gravitational alternative to dark energy. Amongst the various 40 

modifications, )(Rf  theory of gravity is treated most suitable due to cosmologically 41 

important )(Rf  models. In )(Rf  gravity, the Lagrangian density f  is an arbitrary function 42 

of R [15, 21-23]. The model with )(Rf  gravity can laid to the accelerated expansion of the 43 

universe. A generalization of )(Rf  modified theory of gravity was proposed by Takahashi 44 

and Soda [24] by including explicit coupling of an arbitrary function of the Ricci Scalar R  45 

with the matter Lagrangian density mL . There are two formalism in deriving field equations 46 

from the action in )(Rf  gravity. The first is the standard metric formalism in which the field 47 

equations are derived by the variation of the action with respect to the metric tensor µνg . 48 

The second is the Palatini formalism. Maeda [25] have investigated Palatini formulation of 49 

the non-minimal geometry-coupling models. Multamaki and Vilja [26] obtained spherically 50 

symmetric solutions of modified field equations in )(Rf  theory of gravity. Akbar and Cai [27] 51 

studied )(Rf  theory of gravity action is a nonlinear function of the curvature scalar R . Nojiri 52 

and Odinstove [28-30] derived that a unification of the early time inflation and late time 53 

acceleration is allowed in )(Rf  theory. Ananda, Carloni and Dunsby [31] studied structure 54 

growth in )(Rf  theory with dust equation of state. Sharif and Shamir [32] and Sharif [33] 55 

have studied the vacuum solutions of Bianchi type-I, V and VI space-times. Sharif and 56 



 

 

Shamir [34] and Sharif and Kausar [35] obtained the non-vacuum solutions of Bianchi type-I, 57 

III and V space-times in )(Rf  theory of gravity. Adhav [36, 37] have investigated Kantowski-58 

Sachs string cosmological model and Bianchi type-III cosmological model with perfect fluid in 59 

)(Rf  gravity. Singh and Singh [38] have obtained functional form of )(Rf  with power-law 60 

expansion in Bianchi type-I space-times. Recently Jawad and Chattopadhyay [39] have 61 

investigated new holographic dark energy in )(Rf  Horava Lifshitz gravity. Rahman et al. 62 

[40] have obtained non-commutative wormholes in )(Rf  gravity with Lorentzian distribution. 63 

Motivated by the above investigations, in this paper an attempt is made to study 64 

Bianchi type-IX space-time when universe is filled with perfect fluid in )(Rf  theory of gravity 65 

with standard metric formalism. Bianchi type-IX space-time are of vital importance in 66 

describing cosmological models at the early stages of evolution of the universe. This work is 67 

organized as follows: In Section 2, )(Rf  gravity formalism is presented. In Section 3, the 68 

model and field equations have been presented. The field equations have been solved in 69 

Section 4. The physical and geometrical behaviors of the two models have been discussed 70 

in Section 5. In Section 6, concluding remarks have been expressed. 71 

 72 

2. )(Rf  GRAVITY FORMALISM: 73 

 74 

The action )(Rf  gravity is given by 75 
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Here )(Rf  is a general function of the Ricci scalar R  and mL  is the matter Lagrangian. 77 

The corresponding field equations of the )(Rf  gravity are found by varying the action with 78 

respect to the metric µνg : 79 

µννµµνµν gRFgRfRRF +∇∇−− )()(
2
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where )()( Rf
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d
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µ∇∇≡ , µ∇  is the covariant derivative and µνT  is the standard 81 

matter energy-momentum tensor derived from the Lagrangian mL .  82 

Taking trace of the above equation (with 1=k ), we obtain 83 
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On simplification, equation (3) leads to 85 
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 87 

3. METRIC AND FIELD EQUATIONS: 88 

 89 

Bianchi type-IX metric is considered in the form, 90 

( ) ydxdzadzyaybdybdxadtds cos2cossin 222222222222 −++++−= ,              (5) 91 

where ba,  are scale factors and are functions of cosmic time t . 92 

The Ricci scalar for Bianchi type-IX model is given by 93 
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The energy momentum tensor for the perfect fluid is given by 95 

 jijiji pguupT −+= )(ρ ,        (7) 96 

satisfying the barotropic equation of state 97 

 ργ=p , 10 ≤≤ γ ,        (8) 98 

where ρ  is the energy density and p  is the pressure of the fluid. 99 

In co-moving coordinate system 100 
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With the help of equations (7) to (9), the field equations (2) for the metric (5) are 102 
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where the overdot )( . denotes the differentiation with respect to t. 106 

 107 

4. SOLUTIONS OF FIELD EQUATIONS: 108 

 109 

The field equations (10) to (12) are highly non-linear differential equations in five 110 

unknowns Fpba ,,,, ρ . Hence to obtain a determinate solution of the system we take the 111 



 

 

expansion scalar (θ ) is proportional to the shear scalar (σ ) (Collin et al. [41]), which leads 112 

to  113 

mba = , )1( ≠m ,                   (13) 114 

where m  is proportionality constant. 115 

Also the power law relation between scale factor )(A  and scalar field ( F ) [37, 42-43] has 116 

been given by  117 

nAF α ,                   (14) 118 

where n  is arbitrary constant and A  is average scale factor. 119 

Equation (14) leads to 120 

nAKF = ,                   (15) 121 

where K  is proportionality constant. 122 

With the help of equation (13), equation (15) reduces to 123 
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Subtraction of equation (10) from (11), (10) from (12) respectively and dividing the result by 125 

F gives 126 
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Subtraction of equation (18) from equation (17) yields 129 
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With the help of equation (13) and (16), equation (19) leads to 131 
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On simplification, equation (20) reduces to 133 
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Integrating equation (21) 135 
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Using equations (13) and (22), equation (5) reduces to 137 
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Using transformations ZzYyXxTb ==== ,,, , equation (23) leads to 139 
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 141 

5. SOME PHYSICAL PROPERTIES OF THE MODEL: 142 

 143 

For the cosmological model (24), the physical quantities spatial volume V , Hubble 144 

parameter H , expansion scalar θ , mean anisotropy parameter mA , shear scalar 2σ , 145 

energy density ρ are obtained as follows: 146 
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Using equations (8), (16) and (22) in equation (10), the energy density is obtained as 158 
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From equation (6) we obtain 160 
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From equation (4) the function of Ricci scalar )(Rf  leads to 162 
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which clearly indicates that )(Rf  is written in terms of T , which is true as )(Rf  depends 165 

upon T .  166 

By inserting the value of R  from equation (32) in equation (33), )(Rf  reduces to a function 167 

of R .  168 

For a special case when ,2== nm )(Rf  turns out to be 169 
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This gives )(Rf  only as a function of R . 171 

 172 

6. CONCLUSION: 173 

 174 

Bianchi type-IX cosmological model have been obtained when universe is filled with perfect 175 

fluid in )(Rf  theory of gravity. The model obtained has singularity at 0=T  and the physical 176 

parameters H , θ , 2σ  are infinite at 0=T  as well. It is observed that the scale factors and 177 

volume of the model vanishes at initial epoch and increases with the passage of time 178 

representing expanding universe. From equation (26) and (28) the mean anisotropy 179 

parameter mA  is constant and )0(
2

2

≠
θ
σ

 is also constant, hence the model is anisotropic 180 

throughout the evolution of the universe except at 1=m  i.e. the model does not approach 181 

isotropy. 182 

It is worth to mention that, the model obtained is point type singular, expanding, shearing, 183 

that is non-rotating and does not approach isotropy for large T . We hope that our model will 184 

be useful in the study of structure formation in the early universe and an accelerating 185 

expansion of the universe at present. 186 

 187 
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