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ABSTRACT 6 

The magneto-thermal instability of an infinite homogeneous self-gravitating rotating partially ionized Hall 7 

plasma in the presence of viscosity, electrical resistivity, permeability, porosity, rotation and finite electron 8 

inertia is studied by means of linear perturbation analysis. A general dispersion relation is obtained using 9 

the normal mode analysis. Furthermore, the wave propagation parallel and perpendicular to the direction 10 

on magnetic field has been discussed. The stability of the system is discussed by applying Routh-Hurwitz 11 

criterion. For longitudinal propagation, it is found that the condition of radiative instability is independent of 12 

the magnetic field, collision frequency of neutrals with ions, Hall currents, finite electron inertia, porosity 13 

and viscosity; but for the transverse mode of propagation it depends on the strength of the magnetic field, 14 

rotation, porosity and electron inertia but independent of viscosity, permeability, electrical resistivity and 15 

collision frequency. From figures, we found that the effect of collision with neutrals, rotation, magnetic 16 

field and temperature dependent heat-loss function have a stabilizing influence while thermal conductivity 17 

and density dependent heat-loss functions have destabilizing influence on the self-gravitational instability 18 

of partially-ionized gaseous plasma. In addition, the classical Jeans condition regarding the rise of initial 19 

break up has been considerably modified due to the radiative heat-loss function.  20 
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1. INTRODUCTION 25 

The problem of magneto-gravitational instability of interstellar matter is of considerable 26 

importance in connection with protostar and star formation in magnetic dust clouds. By considering plane 27 

wave perturbations to an infinite uniform medium, Jeans [1] has obtained that the disturbances would 28 

grow if their wave length exceeded a certain minimum �� is given by ��� = ���/�	, where S, G, and ρ 29 

denote the sound velocity, gravitational constant and density of the medium, respectively. Comprehensive 30 

investigations of the Jens instability in self-gravitating fluids and plasmas are contained in 31 

Chandrashekhar [2]. Owing to its relevance with protostar and star formation in magnetic dust clouds, it 32 

has attracted a wide attention in recent years. In this connection, many researchers [3-6] have discussed 33 



the problem of self-gravitational instability of plasma with different physical parameters such as viscosity, 34 

finite electrical conductivity, thermal conductivity, magnetic field and rotation.  35 

In this direction, partially-ionized plasma represents a state which often exists in the universe. 36 

The interaction between the natural and the ionized gas components becomes importance in the 37 

cosmology. Kumar et al. [7] investigated the problem gravitational instability of an infinite homogeneous 38 

self-gravitating, rotating medium carrying uniform magnetic field in the presence of Hall Effect. Recently, 39 

the importance of influence of neutral-ion collision on the ionization rate in the solar photosphere, 40 

chromospahere and in cool interstellar cloud has pointed by Mamun and Shukla [8]. Jacobs and Shukla 41 

[9] have investigated the Jeans instability of partially ionized plasma under the effect of magnetic field. 42 

Borah and Sen [10] have studied the problem of gravitational instability of partially ionized plasma 43 

considering the effects of ions, electrons and charged dust grains.  44 

Along with this, the effects of a Hall current and electrical conductivity are important to understand 45 

the problems of magnetic reconnection and break-down of the frozen-in condition in interstellar dynamics 46 

and in several other astrophysical situations. Ali and Bhatia [11] leading to the conclusion that the Hall 47 

currents are destabilizing in nature. Recently, the effects of Hall current and electrical resistivity on 48 

rotating self-gravitating anisotropic pressure plasma using generalized polytrope laws have been explored 49 

by Prajapati et al. [12]. Shaikh et al. [13, 14] have examined the effects of Hall currents, finite conductivity, 50 

and viscosity on self-gravitational instability of thermally conducting partially ionized plasma in a variable 51 

magnetic field. 52 

 53 

In the past few years, it has been argued that thermal instability may be a reasonably good 54 

candidate, which can accelerate condensation, giving rise to localized structure which grows in density by 55 

loosing heat, mainly through radiation. The first comprehensive analysis of thermal instability in a diffuse 56 

interstellar gas is first given by Field [15]. Bora and Talwar [16] have discussed the magneto-thermal 57 

instability of self-gravitating plasma with generalized ohm’s law. Talwar and Bora [17] have analyzed the 58 

stability of a self-gravitating composite system of optically thin radiating plasma and stars. For cold stars, 59 

they have found that the thermal properties of the plasma have no effect on the situation and the system 60 

remains unstable with respect to at least one stellar mode. The concept of radiation transfer was 61 

suggested as a necessary element for the understanding of processes taking place in stars Trintsadze et 62 

al. [18]. The linear thermal stability of a medium, subject to cooling, self–gravity and thermal conduction 63 

studied by Gomez-pelaez and Moreno-insertis [19]. The effect of dust particles on the thermal instability 64 

of an expanding plasma in presence of equilibrium cooling analyzed by Bora and Baruah [20].  Prajapati 65 

et al. [21] have discussed the problem of self-gravitational instability of rotating viscous Hall plasma with 66 

arbitrary radiative heat-loss functions and electron inertia. Recently, Kaothekar and Chhajlani [22] 67 

investigated the problem of self-gravitational instability of partially ionized plasma with radiative effects. 68 

The effect of radiation and electron inertia on the Jeans instability of partially ionized plasma have been 69 

studied by Dangarh et al. [23] and concluded that the Jeans criterion of instability is modifies to radiative 70 

instability criterion due to radiative heat-loss function. The effect of radiative heat-loss functions and finite 71 



ion Larmor radius (FLR) corrections on the gravitational instability of infinite homogeneous viscous 72 

plasma has been investigated by Kaothekar and Chhajlani [24]. Patidar et al. [25], in recent study, 73 

consider the problem of radiative instability of rotating two component plasma under the effect of electron 74 

inertia but does not include the effect of Hall current and permeability. 75 

In all the above cited examples, we find that none of the authors have considered the combined 76 

effects of neural-ion collision, rotation, Hall current, permeability, porosity, finite electron inertia and self-77 

gravitation on the magneto-thermal instability of finitely electrically conducting, viscous partially ionized 78 

plasma flowing through a porous medium. Thus, in the present analysis, our aim is to analyze the 79 

magneto-thermal instability for a plasma model endowed with several mechanism namely Hall current, 80 

electrical resistivity, rotation, finite electron inertia, neutral-ion collision frequency, ion viscosity, 81 

permeability, porosity, and self-gravitational. This work is applicable to understand the phenomenon of 82 

small structure formation, magnetic reconnection phenomenon in space plasma.  83 

 84 

2. LINEARIZED PERTURBATION EQUATIONS AND DISPERSION RELATION 85 

We assume that the two components of the partially ionized plasma (the ionized fluid and the 86 

neutral gas) behave like a continuum fluid and their state velocities are equal. The effects of a magnetic 87 

field, field of gravity, and the pressure on the neutral components are neglected. Also it is assumed that 88 

the frictional force of the neutral gas on the ionized fluid is of the same order as the pressure gradient of 89 

the ionized fluid. Thus, we are considering only the mutual frictional effects between the neutral gas and 90 

the ionized fluid. It is assumed that the infinite homogeneous plasma medium is embedded in uniform 91 

magnetic field 
(0,0, �). 92 

The standard linearization process is applied to linearize the basic MHD Set of equations of the 93 

problem. We suppose all the physical quantities are the sum of their equilibrium and perturbed parts i.e. 94 

� = �� + �′(��, �), � = � + ℎ(��, �), � = �� + �′(��, �), 	 = 	� + 	′(��, �), � = �� + �′(��, �), � = �� + �′(��, �), 95 

ℒ = ℒ� + ℒ′(��, �). It is considered that the fluid motion is steady with �� = 0. Thus the linearized 96 

perturbation equations governing the motion of hydro-magnetic thermally conducting two component 97 

plasma, rotating with a uniform angular velocity are given by 98 

���
�� = −  !" #�′ + #�′ +  %&!" (# × () × 
 + !)!" *+(�,- − �-) + * .∇��- − ��

012 + 2(�′ × 4),    (1) 99 

��,��� = −*+(�,- − �′),                                                                                       (2) 100 

5 �!-�� = −	�#. �′,                                                                                   (3) 101 

∇��′ = −4��	′,                                                                                  (4) 102 

 (89 ) �!-�� − 8(89 ) :"!"
�!-�� + 	�;ℒ!	′ + ℒ<�′= − �∇��′ = 0,                     (5) 103 

:-:" = <-<" + !-!",                                                                                                 (6) 104 



�(�� = # × (�′ × 
) + >∇�( −  +%&@A B# × C(# × () × 
DE +  +F
GHIF ��� ∇�(,                     (7) 105 

#. ( = 0.                                                                                                        (8) 106 

where the symbols, G denotes gravitational constant, * is kinematic viscosity, *+ is the collision 107 

frequency between two components, J  is the medium permeability, λ is the coefficient of thermal 108 

conductivity, η is electrical resistivity, γ is adiabatic index, Ω (Ωx, 0, Ωz) is rotational frequency, c is velocity 109 

of light, N is number density of electron, e is the charge of electron, and �K denote velocity of neutral 110 

particles. Here in equation (5), ℒρ,L denote the partial derivatives of density dependent (Mℒ/M	)< and 111 

temperature dependent (Mℒ/M�)! heat-loss functions respectively. 112 

 We now solve equation (1) to (8) using normal mode analysis with assumption, that all the 113 

perturbed quantity vary as 114 

exp. CN(OPQ + ORS) + T�D.                                     (9) 115 

where σ is the frequency of harmonic disturbances, kx,z are the wave numbers in transvers and 116 

longitudinal directions to the magnetic field, such that OP� + OR� = O2. eqn. (5) and eqn. (6) yield the 117 

following relation between δp and δρ:  118 

U� = .VWXYZFXW[ 2 U	,                                      (10) 119 

where �\ = ]^��/	� is the adiabatic velocity of sound in the medium and the parameters A and B 120 

are defined by 121 

_ = (^ − 1) .ℒ<�� − ℒ!	� + abF<"!" 2,   122 

c = (^ − 1) .ℒd<"!":" + abF<":" 2.                                        (11) 123 

 We obtain the four linear equations in terms of the amplitude components �, e, f, g as 124 

.h + bFiF\j 2 � − (k + 2ΩR)e + lbmbF Ω<�  g = 0.                              (12) 125 

(k + 2ΩR)� + .h +  bnFiF\j 2 e − 2ΩPf = 0.                                 (13) 126 

2ΩPe + hf + lbnbF Ω<�  g = 0.                                                         (14) 127 

.lbmbFiF\j 2 � − (NOPk + 2NOPΩo − 2NORΩP)e − ;T5h +ΩL�=g = 0.          (15) 128 

where g = ;	′/	�=, is the condensation of the medium, p = ;�/]4�	�= is the Alfven velocity. Also 129 

we have assumed the following substitutions to avoid the complexity in algebraic calculations 130 

q = .h + bFiF\j 2,     q� = .h + bnFiF\j 2,     qr = ;5Th + ΩL�=,     h = .T + Ts*tT+*t + Ωu2,  131 

v = (w� + OR�k�O�),   k = . +x%&@A2,   w = (yT + Ωz),   s = .!)! 2,   Ωz = ;>O2=,   Ωu =132 

* .O2 + 1J12,  133 



Ω<� = {XΩ|FWΩ}FXW[ ~,   Ω�� = (O�_ − 4��	�c),   Ω�� = (O��\� − 4��	�),   k = .bnF�p2O2
v 2.  134 

Now we can write equation (12)-(15) in the matrix form, to obtain the dispersion relation, as 135 

 [X] [Y] = 0.       (16) 136 

 Here [X] is the fourth order matrix and [Y] is the single column matrix of elements [�, e, f, g]. The 137 

vanishing of [X] gives the following equation,   138 

−qr�q ;q�h + 4ΩP�= + h(k + 2ΩR)�� + bmFΩdFbF �4hΩR� + \�@FbFiF
j + %\bFiFΩmFj +139 

hk � + 4ΩRk h� + bnF bF 4ΩP�Ω<� q − 2ΩPOPORΩ<� ���ΩnbF + iFbnF�j � (q + h) − �1O2p2
v −140 

�Ωn\iF
j � = 0.                                                    (17) 141 

The dispersion relation (17) shows a general dispersion relation for wave propagation in an 142 

homogeneous self-gravitating partially ionized plasma incorporating the effects of magnetic field, rotation, 143 

thermal conductivity, radiative heat-loss function, Hall current, electrical resistivity, permeability, finite 144 

electron inertia, viscosity and porosity of the medium. We find that in (17) the terms due to the Hall current 145 

have entered through the factor Q.  146 

The preceding dispersion relation (17) is the modified form of the dispersion relation obtained by 147 

Dangarh et al. [23] due the consideration of Hall current, rotation, viscosity, permeability, porosity, and 148 

electrical resistivity, excluding electron inertia. Also ignoring the effect of rotation, Hall current and neutral 149 

particles the above dispersion relation reduces to Kaothekar and Chhajlani [24] excluding permeability 150 

and FLR correction. Again equation (24) gives the same result as Bora and Talwar [16] by ignoring 151 

rotation permeability and neutral ion collision in our case. Now, we will reduce (17) in two different modes 152 

of propagation, parallel and perpendicular to the magnetic field to investigate the effects of considered 153 

parameter, separately and simultaneously. 154 

 155 

3. ANALYSIS OF THE DISPERSION RELATION 156 

3.1.  Longitudinal mode of propagation (� ∥ 
)  157 

For this case we assume all the perturbations longitudinal to the direction of the magnetic field i.e. 158 

(kz = k, kx = 0). This is the dispersion relation reduces in the simple form to give  159 

−q q�qrh−4q qrΩP� − hqr .�p2O4
v + 2ΩR2� + 4q ΩP�Ω<�  = 0.     (18) 160 

Equation (18) gives the general dispersion relation for an infinite homogeneous, uniformly 161 

magnetized, self-gravitating, rotating, partially ionized Hall plasma having finite electrical and thermal 162 

conductivity, porosity, permeability, viscosity, and radiative heat-loss functions when the disturbances are 163 

propagating parallel to the magnetic field. Again for simplicity, the dispersion relation (18) is discussed for 164 

axis of rotation is along and perpendicular to the magnetic field separately. 165 

 166 



3.1.1.  Axis of rotation along magnetic field 167 

 When the axis of rotation is along the magnetic field, we put ΩP = 0 and ΩR = Ω, the dispersion 168 

relation (18) reduces to 169 

−qrh .q q� + 4Ω� + O4�Fp4O4
v2 + 4Ω �p2O4

v 2 = 0.                  (19) 170 

This dispersion relation (19) represents a wave propagation, in longitudinal direction with axis of 171 

rotation is parallel to magnetic field, for self-gravitating partially ionized plasma under influence of Hall 172 

effect, radiative effect, electrical conductivity, electron inertia, viscosity, and permeability of porous 173 

medium. Dispersion relation (19), on substituting the values of N1, N2, N3, M, and D, has three different 174 

independent modes of propagation corresponding to equations. 175 T� + T� + Ωu*+ = 0.              (20) 176 

T� + T�y + T�y� + T�yr + T%y% + Try� + T�y� + Ty� + y� = 0.        (21) 177 

T% + Tr(� + c) + T� �*+CΩu + (1 + s)cD + ��F� + cΩu� + T �*+ ���F� + cΩu� + ��F� � +178 

����F� = 0.                 (22) 179 

[Here � = C*+(1 + s) + ΩuD. and y  to y� in appendix A] 180 

The first of these, equation (20) is identical to Dangarh et al. [23] when the contribution viscosity 181 

and permeability is ignored and also similar to Patidar et al. [25] for non permeable medium. 182 

Equation (20) does not admit a positive real root or complex root whose real part is positive, 183 

meaning thereby that the system is stable. Therefore (20) represents the stable damped mode due to 184 

viscosity of medium, modified by the effect of collision frequency and permeability. Hence, we can 185 

conclude that the viscous partially ionized fluid is more stable then viscous fluid. 186 

The second one, equation (21) represents Alfven mode of propagation coupled with the effects of 187 

Hall current, collision frequency, viscosity, permeability, rotation, electrical resistivity, and electron inertia. 188 

Equation (21) is the same as obtained by Patidar et al. [25] when ignoring the effect of Hall current and 189 

permeability. Also (21) is the modified form of dispersion relation of Prajapati et al. [21] due to the effect of 190 

neutral-ion collision and porosity of the medium. Again the dispersion relation of Kothekar and Chhajlani 191 

[22] can be modify in form of (21) by considering the effect of Hall current, electron inertia, rotation, 192 

porosity and permeability of porous medium in their case.  193 

For perfectly electrically conducting medium [Ωz = 0] and in the absence of collision frequency 194 

and Hall current B*+ = k = 0E the dispersion relation (21) reduces to   195 

T% + Tr2Ωu + T� �Ωu� + �iFbF
� + 4Ω�� + T ����iFbF

� � + i�b�
�F = 0.          (23) 196 

The stability of the system, represented by preceding equation, is discussed using Routh-Hurwitz 197 

criterion, since all the coefficients of equation (23) are positive that the necessary condition for instability 198 

of the system is satisfied. To obtain the sufficient condition, the principal diagonal minors of Hurwitz matrix 199 

must be positive, which are shown below 200 



∆ = 2Ωu > 0.    201 

∆�= 2Ωu �Ωu� + 2 iFbF
� + 4Ω��  >  0.  202 

∆r= 4Ωu� iFbF
� BΩu� + 4Ω�E > 0.  203 

∆%= i�b�
�F ∆r> 0.  204 

We see that all ∆’s are positive so we find that a magnetized, rotating, viscous plasma in perfectly 205 

electrically conducting medium is a stable system. For an in-viscid fluid, BΩu = 0E, (24) reduces to  206 

T% + T� ��iFbF
� + 4Ω�� + i�b�

�F = 0.      (24) 207 

It is evident from equation (24) that  208 

T ,�� = − �iFbF
� + 2Ω�� ± 2Ω .iFbF

� + Ω�2 /�
.    (25) 209 

Thus, we see in equation (25), the two Alfven waves modified by electron inertia and rotation, 210 

moving in opposite direction. Now for in-viscid [Ωu = 0], finitely conducting medium in the absence of 211 

neutral particles [*+ = 0], eq. (21) can be written as 212 T�y� + T2Ωzy + Ωz� + 2k�O% = 0.       (26) 213 

T%y� + Tr2Ωzy + T�BΩz� + 2p�O�y + k�O% + 4Ω�y�E + T2ΩzBp�O� + y4Ω�E +214 

p%O% + 4Ω�Ωz� + 4Ω�k�O% + 4ΩkO%p� = 0.      (27) 215 

Equation (26) represents the effect of Hall current and finite electrical resistivity. It may be 216 

remarked that due to resistivity and Hall current, mode of propagation is periodically in nature which is 217 

quenched by resistivity parameter as exp. (−>O�)� and in the absence of Hall current this mode is 218 

damped stable mode due to electrical resistivity. Equation (27) is fourth degree equation having all its 219 

coefficients positive and the principle diagonal minors of Hurwitz’s matrix are also positive hence this 220 

mode shows stability.  221 

The last one, equation (22) represents combined effect of radiative heat-loss function, thermal 222 

conduction, and self-gravitation. It is evident from (22) that this mode is independent of the effects of a 223 

magnetic field, electrical resistivity, Hall current, rotation, and electron inertia. In the absence of neutral-224 

ion collision, and porosity (22) is reduces to Prajapati et al. [21] also (22) is similar to Patidar et al. [25] by 225 

ignoring the effects of permeability and Hall current.  226 

  The dispersion relation (22) is a fourth degree equation which may be reduced to particular 227 

cases so that the effect of each parameter is analyzed separately. 228 

For thermally non-conducting, non-radiating, non viscous, self-gravitating fully ionized fluid we 229 

have [A = B = *+= * = 0], and for non porous medium [5 = 1], the dispersion relation (22) reduces to 230 T� + �\�O� − 4��	� = 0.                                                (28) 231 

This is the same equation obtained by Jeans for gravitational instability of infinite homogeneous 232 

self-gravitating fluid. It is clear from equation (28) that when Ω � < 0, the product of the roots of equation 233 



(28) must, therefore, be negative. This implies that at least one root of T is positive. Hence, the system is 234 

unstable when  235 Ω�� = (�\�O� − 4��	�) < 0. 236 

O <  O� = .%&¢!"YZF 2 /�
.                                                 (29) 237 

where, kj is the Jeans wave number. The fluid is unstable for all wave number O <  O�. It is 238 

evident from (29) that the presence of neutral particles does not alter the Jeans’ criterion of instability. 239 

For non-radiating but thermally conducting, viscous and self-gravitating fluid having neutral 240 

particles, (22) reduces to 241 

T% + Tr(� + Ωb) + T� �Ωu*+ + �Ωb + �|1F
� � + T �*+ {�|1F

£ + ΩuΩb~ + �¤�|1F
� � + ���¤�|1F

� = 0.  (30) 242 

where Ωb = ;�^O�/	�t:= and t: is the specific heat of the gas at constant pressure, Ω� � =243 

(�l�O� − 4��	), and �l = ]�/	, is the isothermal velocity of the sound. It is clear from the constant term of 244 

equation (30) that the system leads to instability if Ω� � < 0, which gives �l�O� − 4��	� < 0, and 245 

corresponding wave number as 246 

O <  O� = {%&¢!"Y¥F ~ /�
.                                                   (31) 247 

where O�  is the modified Jeans wave number for thermally conducting system. On comparing 248 

equation (29) and (31) we observe that the adiabatic sound velocity is replaced by isothermal one in the 249 

Jeans expression for thermally conducting medium. Again from (31) we can say that the collision between 250 

neutral and ionized component does not affect the Jeans expression for gravitational instability.  251 

It is clear from equation (31) that, when γ > 1 then (�\ > �l) therefore owing to thermal conduction 252 

Jeans wave number is increased as a result the critical wavelength is reduced. Thus the size of initial 253 

break up is reduced; the destabilizing effect is produced in the interstellar medium. If we consider non-254 

gravitating but thermally conducting plasma incorporated with radiative heat-loss function then the 255 

expression for critical wave number is given as  256 

O < O�� =  O� ¦ 8ℒdℒd 9 §"ℒ§d
¨ /�

.                                          (32) 257 

Here O�� is the modified critical wave number due to inclusion of radiative heat-loss function. 258 

Hence, for wave number O < O��, the system is unstable. It is clear from (32) that in this case the critical 259 

Jeans wave number depends on the derivatives of the heat-loss function with respect to local 260 

temperature and local density in the configuration. The critical Jeans wave number vanishes if the heat-261 

loss function is independent of temperature (ℒ< = 0) and √^ times of original critical Jeans wave number 262 

if the heat-loss function is purely temperature-dependent ;ℒ! = 0=. It may be remarked that the critical 263 

wave number decreases or increases as the heat-loss functions respectively increases or decreases with 264 

increases in density. 265 



Owing to simultaneous effect of all the parameters represented by the original dispersion relation 266 

(22), the condition of instability obtained from eq. (22) form constant term is 267 

Ω�� = �O� . ��ℒL − 	�ℒª  +  abF<"!" 2 − 4��	� .<"!"ℒd:" + <"abF
:" 2� < 0.      (33) 268 

It is evident from (33) that the Jeans’ criterion of instability is modified due to inclusion of thermal 269 

conductivity and radiative term. Also in other word we can say that, the condition of thermal instability 270 

obtained by Field [15] is modified due to self-gravitation. The inequality (33) is similar to that of obtained 271 

by Bora and Talwar [16] and also to that of Patidar et al. [28] and can be solved to get the following 272 

expression of critical Jeans wave number 273 

O�r  =   �1/F «¬�%&¢!"Y¥F + !"Fℒ§a<" − !"ℒda �  ± {%&¢!"Y¥F + !"Fℒ§a<" − !"ℒda ~� +   �&¢!"FℒdaY¥F ® /�¯.       (34) 274 

It may be noted here that modified critical Jeans wave number involves, derivatives of 275 

temperature dependent and density dependent heat-loss function and thermal conductivity of the 276 

medium. If we assume that the radiative heat-loss function is purely temperature dependent (ℒρ = 0), 277 

increases with temperature (ℒL > 0) then (35) is reduces to (31) to obtain the condition of monotonic 278 

instability. However, if instead the arbitrary radiative heat-loss function decreases with temperature 279 

(ℒL < 0), the instability arises for k2 lying between the values (|ℒ<|/�) and (4��	�/�l�) for parallel 280 

propagation. Furthermore, if it is considered that heat-loss function is purely density dependent (ℒL = 0) 281 

then the condition of instability is given as 282 

O < O�% =  {%&¢!Y¥F  +  !Fℒ§a< ~ /�
.                                     (35) 283 

It is evident from (35) that the critical wave number is increased or decreased, depending on 284 

whether the arbitrary radiative heat-loss function is an increasing or decreasing function of the density.  285 

In order to discuss the dynamical stability of the system represented by (22), we applied the 286 

Routh-Hurwitz criterion. According to this criterion, the necessary condition is that all the coefficients of 287 

the polynomial equation (22) should be positive. In order to satisfy the sufficient condition, we calculate 288 

the minors of the Hurwitz matrix formed by these coefficients, which are 289 ∆ =  (� + c) > 0.   w±   ^ > 1    290 

∆�=  ��Ωu*+ + c*+ �|F£ + ���|F£ + [�|F� + �c� + ��c − �}F£ �  >  0.  291 

∆r = ��cΩu�*+� + �|F��F��²
£ + ²�����}F� + ��*+Ωuc� + ²F��[�|F� + ²F�}F[� + �*+Ωucr +292 

��[F�|F²
� + ����[F�|F� + ��[�|�� + �|F�}F[

£ + [��F���|F� + ��F��[�|F� + �|F�}F[���F + �|F�}F���F + ��[�|�� +293 

�����|�� + ��[F�}F� + ��[F�}F� − �}F£ {���|F� + �}F£ + Ωu*+c + ��*+ + 2�*+c~� > 0.  294 

∆% =  ���}F∆³� > 0.  295 



Since these all ∆’s are positive, thereby, satisfying the Routh-Hurwitz criterion, according to which 296 

equation (22) will not include any positive real root of σ or a complex root whose real part is positive. 297 

Therefore the system represented by (22) will remain stable if Ω�� = BO�_ − 4��	�cE > 0. Thus we find 298 

that for longitudinal wave propagation the gravitating plasma is stable if the condition BO�_ > 4��	�cE is 299 

satisfied. 300 

 301 

3.1.1.1. Non-gravitating hydromagnetic fluid 302 

In this section, for non-gravitating hydromagnetic fluid, two modes of propagation are similar to as 303 

discussed in equations (20) and (21) but the third mode of propagation is quite different from that of 304 

discussed in (22) for self-gravitating fluid. The dispersion relation for non-gravitating viscous fluid 305 

subjected to general heat-loss function and Hall current with thermal and electrical conductivity flowing 306 

through porous medium is obtained from the third factor of equation (19) and given as 307 T%5 + Tr(� + c)5 + T�B*+CΩu + (1 + s)cD5 + �\�O� + cΩu5E + TB*+�\�O� +308 

εcΩu*+ + O�_E + *+O�_ = 0.         (36) 309 

Evidently, if _ < 0 then above equation will posses at least one positive root implying thereby 310 

instability of the system. The condition of instability for non-gravitating hydromagnetic fluid is given as 311 

 .ℒ<�� − ℒ!	� + abF<"!" 2 < 0.   312 

 The critical wave number is given as 313 

O�r =  µ;!"ℒ§9ℒd<"=!"a<" .        (37) 314 

We notice the effect of neutral-ion collision does not affect the condition of instability but its 315 

presence modifies the dispersion relation (36) as well as the growth rate of instability of and non-316 

gravitating radiating Hall plasma medium. Also we find that condition of instability (37) is independent of 317 

viscosity, Hall current, rotation, electrical resistivity, porosity and finite electron inertia and is identical to 318 

Field [15]. It is clear from equation (37) that when the arbitrary radiative heat-loss function is independent 319 

of temperature of the configuration (i.e. ℒ< = 0), then  320 

O�% = 	�µℒ§a< .        (38) 321 

If inequalities (38) is applied for increases with temperature (ℒL > 0), then the condition of 322 

monotonic instability is given as O < O�%. However, if instead the arbitrary radiative heat-loss function 323 

decreases with temperature (ℒL < 0), the instability arises for k2 lying between the values (|ℒ<|/�) and 324 

;	�ℒ!/��= for parallel propagation. 325 

The mechanism underlying the thermal instability is a heat-loss function which decreases with 326 

temperature and increases with density and is important to analyze the instability phenomena of various 327 

astrophysical problems, such as coronal condensations. For the solar corona, the heat-loss function 328 

depends on local density and temperature so that the above conditions of thermal instability are satisfied, 329 



resulting in, the local temperature falls, the local pressure decreases leading to condensation of the cool 330 

plasma which radiates faster because of density rise. 331 

 332 

3.1.2. Axis of rotation perpendicular to the magnetic field 333 

In the case of a rotation axis perpendicular to the magnetic field we put Ωx = Ω , and     Ωz = 0 in 334 

the dispersion relation(18) and this gives. 335 

−h �q q�qr + qr .i�b�b�¶F
VF 2 − 4TΩ�q � =  0.          (39) 336 

This dispersion relation is the product of two independent factors. These factors show the mode 337 

of propagations incorporating different parameters as discussed below.  338 

Dispersion relation (39) has two different independent modes of propagation corresponding to 339 

equations. 340 T� + T� + Ωu*+ = 0.               (40) 341 

T � + T  · + T �·� + T¸·r + T�·% + T�·� + T�·� + T�·� + T%·� + Tr·¸  + T�· � +342 

T ·  + · � = 0.                (41) 343 

The first of these, (40) is similar to (20) and represents the combined stable effect of viscosity, 344 

permeability and neutral ion collision in damped oscillatory form. 345 

The last one, (41) is, very lengthy and complex to write here, but to discuss the condition of 346 

instability we need the constant term of the last coefficients. Equation (41) represents the general 347 

dispersion relation for an infinite homogeneous, rotating, thermally conducting, self-gravitating, and 348 

viscous partially ionized plasma flowing through porous medium incorporating radiative heat-loss function 349 

and magnetic field, when the disturbances are propagating along the direction of magnetic field and the 350 

axis of rotation is perpendicular to the direction of magnetic field. The constant term of the last coefficient 351 

of (41) is given by 352 

· � = *+rΩ�� ����¹� .���¹³�³ + ����¹�Fb�
�³ + �iFbF�¹F�³ + �iFbF�Fb�

�³ 2 + .��bº
�� Ωu� + i�b��¹F�� +353 

i�bº�F
�� 2�.  354 

The condition of instability is obtained from constant term of equation (41) and gives as 355 Ω�� =  O�_ − 4��	�c < 0.                                (42) 356 

The above condition of instability is identical to the condition (33) for radiative instability. We find 357 

that the condition of instability for this mode of propagations, in both the cases of rotation parallel and 358 

perpendicular to a magnetic field is the same and there is no effect of the direction of rotation on the 359 

instability condition. Also we can conclude that the presence of finite electron inertia, Hall current porosity 360 

and neutral particles does not alter the condition of radiative instability in longitudinal mode of 361 

propagation, but presence of these parameters modifies the growth rate of instability. 362 

 363 

3.1.2.1.  Non-gravitating hydromagnetic fluid  364 



In this case, for non-gravitating hydromagnetic fluid, first mode of propagation is identical to 365 

equations (20) hence no need to be discussed here but the last factor is affected and for non gravitating 366 

hydromagnetic fluid the coefficient of the last term of (41) reduces to  367 

*+r ����¹� .���¹³�³ + ����¹�Fb�
�³ + �iFbF�¹F�³ + �iFbF�Fb�

�³ 2 + .��bº
�� Ωu� + i�b��¹F�� +368 

i�bº�F
�� 2� O�_ = 0 .         (43) 369 

The dispersion relation (43) shows the combined influence of viscosity, permeability of porous 370 

medium, rotation, Hall current, electrical and thermal conductivity on thermal instability of magnetized 371 

non-gravitating plasma. 372 

Equation (43) can be converted to the equations of previous work of Field [15] and Ibanez [26], by 373 

ignoring the effect of finite electron inertia, viscosity, rotation, finite electrical resistivity and collision 374 

frequency between two components of partially ionized plasma and setting molecular weight unity in their 375 

cases. 376 

Hence the present results are the modified results of Field [15] and Ibanez [26] with these 377 

considered parameters. The condition of instability of Field [15] and Ibanez [26] is modified due to our 378 

consideration of self gravitation of the medium. The growth rate of instability of this dispersion relation will 379 

also be modified due to presence of these parameters. If we ignore the effects of finite electron inertia, 380 

finite electrical resistivity, collision frequency and viscosity (43) reduces to the one similar to that obtained 381 

by Aggarwal and Talwar [27]. 382 

 383 

3.2. Transverse mode of propagation (� ⊥ 
) 384 

For this case we assume all the perturbations are propagating perpendicular to the direction of 385 

the magnetic field, for, our convenience, we take kx = k, and kz = 0, the general dispersion relation (17) 386 

reduces to  387 

− �Th% + Thr iFbF
\ + hrΩ<� + T4h�ΩP� + 4ΩP�hΩ<� + iFbF

\ 4ThΩP� + 4h�ΩR�T� =  0.      (44) 388 

We find that in the transverse mode of propagation the dispersion relation (44) is modified due to 389 

the presence of neutral particles, thermal conductivity, finite electron inertia, rotation, viscosity, magnetic 390 

field, permeability, porosity of the medium and radiative heat-loss functions. It is noted that the equation 391 

(44) is independent of Hall parameter in other words we can say that there is no influence of Hall current 392 

in transverse direction of propagation. In the absence of viscosity, permeability, porosity of the medium, 393 

rotation, and partially-ionized plasmas, (44) reduces to that of Bora and Talwar [16] in dimensional form.  394 

 395 

3.2.1. Axis of rotation along magnetic field 396 

When the axis of rotation is along the magnetic field, we put Ωx =0, and Ωz = Ω in the dispersion 397 

relation (44) and this gives. 398 

h� .Th� + Th iFbF
\ + hΩ<� + 4TΩ�2 =  0.        (45) 399 



This dispersion relation (45) shows the simultaneous influence of viscosity, permeability, rotation, 400 

thermal conductivity, radiative heat-loss functions and porosity of the medium on the self-gravitational 401 

instability of the hydromagnetic fluid plasma. Dispersion relation (45) has two different independent 402 

modes of propagation corresponding to equations. 403 T� + T� + Ωu*+ = 0.             (46) 404 

T� + ¼  T� + T�¼� + T%¼r + Tr¼%  +  T�¼� + T¼� + ¼� = 0.   (47) 405 

where  406 

¼ = ��¹½ + 2� + c�.  407 

¼� = ��¹� (2� + c) + 2Ωu*+ + �(� + 2c) + iFbF
� + �|F� + 4Ω��.  408 

¼r =  ��¹� {�|F� + �� + 2¾c + 4Ω�~ + 2ΩuνÀ .� + c + �¹� 2 + � {�|F� + �c~ + bFuF
� (� + c +409 

*À) + �}F� + �Á�|F£ + 4Ω�c + 8Ω�*À�.  410 

¼% =   ��¹Ã {�}F� + ��c + � + �Á�|F£ + 4Ω�c~ + ÄFbF
� (�c + c*À + �*À) + *ÀΩu {Ωu*+ +411 

2�c + �²�¹� + �[�¹� + bFuF
� + �|F� 2 + ²�}F� + *À {²�|F� + �}F� + 4Ω�*+ + 8Ω�c +412 

��F�¹� 2�.  413 

¼� =  ��¹� {���}F� + ²���|F� + ²�}F� ~ + Ωu*+ {�����¹� + Ωu*+c + �²[�¹� + [iFbF
� + ��iFbF

� + Ω�� +414 

�¹�|F�� 2 + *+ {�����|F� + ²[iFbF
� + ²�}F� + %�F���¹� + 4Ω�c*+ + ��F[�¹� ~�  415 

¼� = �Ωu*+ �¹� {�¹½ cΩu*+ + *+ [iFbF
� + �¹�}F�� + ���}F� + �¹���|F�� + %�¹�F[��� ~ + ²���¹�}F� �.  416 

¼� = .Å�F���¹�}F�� 2.   417 

The first of these, is identical with equation (20) and represents a viscous type of damped stable 418 

mode modified by the effects of viscosity collision frequency. 419 

The second one, (47) represents the effect of simultaneous inclusion of the viscosity, thermal 420 

conductivity, radiative heat-loss function, permeability, porosity, collision frequency, and rotation on the 421 

magneto-gravitational instability of plasma medium when the wave propagation is assumed to be 422 

perpendicular to the prevalent magnetic field. It can be seen that when Ω�� < 0, the constant term of the 423 

dispersion relation (47) will be negative. This implies that at least one root of is positive, hence the system 424 

is unstable. So the condition of instability for transverse mode of propagation is given as  425 

  Ω�� = �O� . ��ℒL − 	�ℒª  +  abF<"!" 2 − 4��	� .<"!"ℒd:" + <"abF
:" 2� < 0.   (48) 426 



This condition of instability in transverse mode of propagation is identical to the condition of 427 

instability (33) for longitudinal mode of propagation, which has already been discussed. In the absence of 428 

viscosity and neutral particles 429 

T% + Tr ��¹� + c� + T� ��¹� c + iFbF
� + �ÆF� + 4Ω�� + T ��¹� {�ÆF� + 4Ω�~ + bFuF

� c + �}F� +430 

4Ω�c� + ��¹� .�}F� + 4Ω�c2� = 0.         (49) 431 

The instability of the system in this case will be governed by the condition ;Ω�� + 4Ω�c5= < 0; i.e., 432 

the system will be unstable for all  O < O�  , where  433 

√2O�  = µÇr ± �Çr� + Èr� /�
,         (50) 434 

Çr = {!"Fℒ§a<" + %&¢!"Y¥F − !"ℒda − %��F
Y¥F ~,   Èr =  �ℒdaY¥F (��	�� − 5Ω�). 435 

This is the modified condition of instability of radiative instability due to the effect of rotation. From 436 

(50) we conclude that rotation decreases the value of critical wave number and tries to stabilize the. Here 437 

we notice that the rotation affects the radiative instability criterion in transverse mode of propagation when 438 

medium is in-viscid and axis of rotation is taken parallel to the magnetic field.  It means that the viscosity 439 

parameter removes the effect of rotation. Again in the absence of electrical resistivity we can write (47) in 440 

the form. 441 

Tr + T�c + T �iFbF
� + �ÆF� + 4Ω�� + �bFuF[� + �}F� + 4Ω�c� = 0.   (51) 442 

Here we get the condition of instability if .Ω�� + 4Ω�c5 + bFuF[�� 2 < 0. The system will be unstable for all  443 

O < O�   where  444 

O� � = µÉ�±�É�FWÊ��1/F
�  ,        (52) 445 

Ç% = Ë{!"Fℒ§a<" + %&¢!"Y¥F − %��F
Y¥F ~ {1 + �iF

ÌY¥F~9 − !"ℒda Í,   È% =  �ℒdaY¥F (��	�� − 5Ω�). 446 

Reviewing the condition of instability (52), i.e. the value of the critical wave number, we can 447 

conclude that presence of magnetic field and rotation modifies the condition of instability. Hall current 448 

does not affect the condition of instability in this mode of propagation. It is also noted that when the 449 

medium is finitely electrical conducting the effect of magnetic field, in condition of instability, vanishes.  450 

For our convenience to show a better insight, the graphical presentation of the exact growth rate 451 

of the system represented by (47) can be written in non-dimensional form (Appendix) introducing 452 

dimensionless quantities, assuming (	 ≫ 	Ï) so that s ≪ 1 and dividing (47) by (4��	�) /�,  as 453 

T∗ = X(%&¢!")1/F,    *+∗ = ��(%&¢!")1/F,    O∗ = bÒZ(%&¢!")1/F,    *∗ = �(%&¢!)1/F
ÒZF ,    �∗ = (Ó9 )LÔ(%&¢!")1/F

:ÒZF ,  454 

>∗ = Õ(%&¢!")1/F
ÒZF ,    Ω∗ = �(%&¢!")1/F,    p∗ = i(%&¢!")1/F

ÒZ ,    ℒ!∗ = (89 )§ℒ§ÒZF(%&¢!")1/F,   ℒ<∗ = (89 )§<ℒd!(%&¢!")1/F,  455 



Ωu∗ = O∗�*∗,    _∗ =  8  (ℒ<∗ + �∗O∗�) − ℒ!∗ ,    c∗ = (ℒ<∗ + �∗O∗�),   Ω�∗� = O∗�_∗ − c∗, 456 

 Ω�∗� = O∗� − 1,  Ωz∗ = O∗�>∗ 457 

Numerical calculations were performed to determine the roots of T from dispersion relation (47), 458 

as a function of wave number k for several values of different parameters involved, taking γ = 5/3. The 459 

variations in the growth rate T∗, with wave number O∗ are shown in Figs 1-7. 460 

 461 

 462 

 463 

Figure 1: The growth rate is plotted against the non-dimensional wave number k* with variation in the 464 

normalized magnetic field p∗ = 0.0, 0.5, 1.0, 1.5 the value �∗ = *∗ = *+∗ = >∗ = Ω
∗ = 1  and the value of ℒ<∗  465 

= 0.0 and ℒ!∗  = 0.5. 466 

Figure 1 shows the variation in growth rate with respect to magnetic field. Here we notice that 467 

when the system is unmegnetized the growth of instability is maximum while the growth rate decreases 468 

with the increasing value of magnetic field. Thus from the graph we conclude that the effect of magnetic 469 

field is to stabilize the system.  470 
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 472 

 473 

Figure 2: The growth rate is plotted against the non-dimensional wave number k * with variation in the 474 

normalized rotational effect Ω∗ = 0.0, 1.0, 2.0, 3.0 the value �∗ = *∗ = *+∗ = >∗ = p∗ = 1 and the value of 475 

ℒ<∗  = 0.0 and ℒ!∗  = 0.5.       476 

 477 

Figure 2 depicts the growth rate of instability in a rotating system against wave vector with 478 

variation in rotation. In fig 2, the growth rate of instability is maximum for non rotating system and showing 479 

decreasing growth rate with increase in value of rotation. It means that rotations decreases the growth 480 

rate of instability and try to maintain the stability of the system. 481 
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 484 

Figure 3: The growth rate is plotted against the non-dimensional wave number k* with variation in the 485 

normalized resistivity effects  >∗ = 0.0, 1.0, 2.0, 3.0 the value �∗ = *∗ = *+∗ = p∗ = Ω
∗ = 1 and the value of 486 

ℒ<∗  = 0.5 and ℒ!∗  = 0.0. 487 

Figure 3, represent the growth rate v/s wave number with varying values of electrical resistivity. 488 

Here on observing the behavior of fig 3 we can say that electrical resistivity increases the growth rate of 489 

instability and destabilize the system equilibrium.  490 

 491 
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Figure 4: The growth rate is plotted against the non-dimensional wave number k* with variation in the 493 

normalized thermal conductivity effects �∗ = 0.0, 1.0, 3.0, 5.0 the value p∗ = *∗ = *+∗ = >∗ = Ω
∗ = 1  and 494 

the value of ℒ<∗  = 0.0 and ℒ!∗  = 0.5. 495 

 496 

Figure 4 shows the effect of thermal conductivity on the growth rate of instability. Here we see 497 

that the increasing value of thermal conductivity increases the growth rate of instability. Thus, the thermal 498 

conductivity shows a destabilizing effect, reciprocal to the effect of magnetic field and rotation on the 499 

growth rate of instability and destabilizes the system. 500 

 501 

 502 

 503 

Figure 5: The growth rate is plotted against the non-dimensional wave number k* with variation in the 504 

normalized neutral particle effects *+∗ = 0.1, 0.2, 0.3, 0.4 the value p∗ = *∗ = �∗ = >∗ = Ω
∗ = 1 and the 505 

value of ℒ<∗  = 0.5 and ℒ!∗  = 0.0. 506 

 507 

Figure 5 is plotted between growth rate and wave number with varying values of collision 508 

frequency. From Fig 5, we can analyze that increasing values of collision frequency decreases the growth 509 

rate of the system. In other words we can say that the presence of neutral particles in ionized plasma is to 510 

stabilize the equilibrium of system. 511 
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 513 

 514 

Figure 6: The growth rate is plotted against the non-dimensional wave number k* with variation in the 515 

normalized temperature dependent hit loss function effects the value ℒ<∗ = 0.5, 1.0, 1.5, 2.0 the value 516 

p∗ = *+∗ = *∗ = �∗ = >∗ = Ω
∗ = 1 and the value of ℒ!∗  = 0.0. 517 

Figure 6 shows the variation in growth rate with respect to wave number under effect of density 518 

dependent heat-loss function. From figure (6) we found that the increasing values of temperature 519 

dependent heat-loss function increases the growth rate of instability of considered system. It means that 520 

the temperature dependent heat-loss function has a stabilizing effect on the system. 521 
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 523 

 524 

Figure 7: The growth rate is plotted against the non-dimensional wave number k* with variation in the 525 

normalized temperature dependent hit loss function effects the value ℒ!∗ = 0.5, 1.0, 1.5, 2.0 the value 526 

p∗ = *+∗ = *∗ = �∗ = >∗ = Ω
∗ = 1 and the value of ℒ<∗ = 0.0.  527 

Figure 7 is plotted, to show the effect of density dependent heat-loss function, between growth 528 

rate and wave number. From figure (7) we analyze that the density dependent heat-loss function plays a 529 

same role as thermal conductivity and electrical resistivity play to destabilize the system. It means that the 530 

increasing values of density dependent heat-loss function increases the growth rate of instability. 531 

 532 

3.2.1.1. Non-gravitating hydromagnetic fluid   533 

In the transverse mode of propagation, dispersion relation (45), for non-gravitating hydromagnetic 534 

fluid; i.e. (4��	� = 0) has two independent factors. First factor is identical to (20) and shows a viscous 535 

damped mode while the last factor (47) is the seventh degree polynomial equation from which the 536 

constant term of last coefficients gives the condition of instability as  537 

_ = .ℒ<�� − ℒ!	� + abF<"!" 2 < 0.      (53) 538 

This condition of instability is similar to the condition of thermal instability obtained by Field [15] 539 

and also to the conditions of instability (37) in longitudinal mode of propagation for non-gravitating 540 

hydromagnetic fluid. Now for perfectly conducting and in viscid fluid this condition of instability will be 541 

modify as 542 

O� .ℒ<�� − ℒ!	� + abF<"!" 2 + �bFiF
� + 4Ω�� 5 .ℒd<"!":" + abF<":" 2 < 0.  (54) 543 
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From the above condition of instability we can say that magnetic field and rotation modifies the 544 

condition of instability in transverse mode of propagation for infinitely electrical conducting and in viscid 545 

fluid when axis of rotation is along the magnetic field.  It means that in our case we find the modified 546 

condition of thermal instability due to presence of rotation and magnetic field.  547 

 548 

3.2.2. Axis of rotation perpendicular to the magnetic field 549 

We now analyze the wave propagation in transverse direction of external magnetic field 550 

considering the rotation of the magnetic field, we put ΩP = Ω and ΩR = 0, the dispersion relation (44) 551 

reduces to 552 

−h(h� + 4Ω�) �Th + T iFbF
\ + Ω<� � =  0.        (55) 553 

Equation (55) has three independent factors, each representing a different mode of propagation. 554 

The first of these, identical with equation (20) and represents a viscous type of damped stable mode 555 

modified by the effects of viscosity collision frequency. The second factor of equation (55) equating to 556 

zero, gives 557 T% + Tr2� + T�B2*ÀΩu + �� + 4Ω�E + TνÀB2�Ωu + 8Ω�E + *+�(Ωu� + 4Ω�) = 0. (56) 558 

This dispersion relation shows a rotating mode with the effect of collision frequency, viscosity and 559 

permeability of the porous plasma medium, which is independent of thermal conductivity, finite electrical 560 

conductivity, finite electron inertia, Hall current, and radiative heat-loss function. Equation (56) is a forth 561 

degree polynomial having all the coefficients positive and a positive absolute term. So the equation will 562 

have all the four roots either negative or complex conjugates with negative real; i.e., it will represent a 563 

stable mode. In the absence of neutral particles and viscosity we get  564 T� + 4Ω� = 0.        (57) 565 

This represents a purely rotational mode which is oscillatory and stable in nature. Hence it is 566 

obvious that rotation in this direction of propagation does not alter the condition of instability but gives a 567 

separate stable mode. The presence of neutral particles, permeability and viscosity simply modifies this 568 

mode. The third factor of equation (55) equating to zero gives.  569 T� + _  T% + Tr_� + T�_r + T_%  +  _� = 0.              (58) 570 

 where,  _  =  ��¹� + � +  c�.  571 

_� =  ��¹� (� + c) + �c + Ωu*+ + iFbF
� + �ÆF� �.  572 

_r =  ��¹� {�ÆF� + �c~ + Ωu*À .c + �¹� 2 + bFuF
� (c + *À) + �}F� + �Á�ÆF£ �.  573 

_% =  ��¹� {Ωu*+c + ���ÆF� + Ω��~ + ÄFbF[ÅÁ� + �Á�}F£ �.  574 

_� =  .�Á�¹�}F�� 2.  575 



Equation (58) represents the dispersion relation for transverse wave propagating through an 576 

infinite homogeneous, self-gravitating, viscous magnetized partially ionized plasma having finite electrical 577 

resistivity, rotation, radiative effects, with the effect of neutral particles. it can be seen that when Ω�� < 0, 578 

The constant  term _� of the dispersion relation (58)  will be negative. This implies that at least one root of 579 

(55) is positive, hence the system is unstable. So the condition of instability for such case in transverse 580 

mode of propagation is given as 581 

  Ω�� = O�_ − 4��	�c < 0.                                (59) 582 

Which is the same condition of instability discussed in (33) and obtained by Bora and Talwar [16] 583 

for finitely electrical conducting, self-gravitating plasma in transverse mode of propagation. Now in the 584 

absence of collision frequency between two components of plasma, kinematic viscosity, permeability and 585 

electrical resistivity i.e. > = 0,ν = 0, ν+= 0, and K1 = 0 the dispersion relation (58) reduces to as 586 

Tr + cT� + T {iFbF
� + �ÆF� ~ + [iFbF

� + �}F� = 0.        (60) 587 

Equation (60) represents a dispersion relation for infinite homogeneous, self-gravitating, thermally 588 

conducting plasma with radiative heat-loss effects. The condition of instability for such case is obtained 589 

from the constant term of equation (60), is given as 590 

.[iFbF�� + O�_ − 4��	�c2 < 0.     (61) 591 

This is modified condition of radiative instability due to the effect of magnetic field, electron inertia, 592 

porosity of the medium, thermal conductivity and radiative heat-loss function in transverse mode of 593 

propagation. The condition is identical with condition obtained by Patidar et al. [25] and also by Aggrawal 594 

and Talwar [27]. From these conditions it is clear that if the fluid expressed by equation (61) does not 595 

contain radiative heat-loss function then the critical Jeans wave number below which the system is 596 

unstable is obtained from the constant terms of equation (61) and is given as  597 

O��� =  8b|F
µ{ W8×�F

Ø�F~ .                (62) 598 

If the arbitrary radiative heat-loss functions are included in a thermally non conducting medium, 599 

the corresponding value of critical wave number is given by 600 

O��� =  ^O�� ¬ <ℒd
<ℒd( W8×�F

Ø�F)9ℒ§!¯ /�
.  (63) 601 

The disturbances with a wave number O < O�� are unstable, where for O > O��, the disturbances 602 

are stable. If the fluid expressed by equation (60) is assumed to be unmagnetized i.e. H = 0 then the 603 

dispersion relation becomes for such case as 604 

. Tr + cT� + T �ÆF� + �}F� = 0.         (64) 605 



This is the dispersion relation for infinite homogeneous non-magnetized, self-gravitating, 606 

thermally conducting plasma having electron inertia, porosity and radiative effect. Condition of instability 607 

for this case is given as 608 Ω�� = O�_ − 4��	�c < 0.       (65) 609 

This condition is identical to (48). On comparing equation (61) and (65) we find that contribution 610 

of electron inertia and porosity in the condition of instability is effective only when the considered fluid is 611 

magnetized. The effect of magnetic field comes through the term V�O�c of magnetic field, there is an 612 

upward shift in the instability threshold i.e. the magnetic field decreases the value of critical wave number. 613 

Thus, we conclude that the magnetic field stabilizes the medium for transverse propagation. 614 

 615 

3.2.2.1.  Non-gravitating hydromagnetic fluid. 616 

For this condition, first two modes of propagation is similar the two modes (20) and (56) of the 617 

dispersion relation (55) for transverse propagation, when axis of rotation is perpendicular to a magnetic 618 

field but the third factor, for perfectly electrical conducting medium, can be written as  619 

T% + TrB� +  cE + T� ��c + Ωu*+ + iFbF
� + YZFbF

� � + T �Ωu*Àc + bFuF
� (c + *À) + bFV� +620 

�ÁYZFbF
£ � + *À �ÄFbF[� + bFV£ �   = 0.              (66) 621 

Equation (66) represents the combined influence of thermal conductivity, radiative heat-loss 622 

function, and magnetic field on the instability of two components partially-ionized plasmas with the effect 623 

of viscosity and permeability of the porous medium. The condition of instability is obtained from dispersion 624 

relation (66) as  625 cp�5 + y_ < 0.        (67) 626 

This is modified condition of thermal instability due to magnetic field, finite electron inertia, and 627 

porosity of the medium. From equation (27) the expression for critical wave number will be given as 628 

O���   =   ��!Fℒ§a< − !ℒda .1 + �uF
�+F2� .1 + �uF

�+F2Ú �.  (68) 629 

The medium is unstable for wave number O < O��. It may be noted here that the critical wave 630 

number involves, derivative of temperature dependent and density dependent arbitrary radiative heat-loss 631 

function, thermal conductivity of the medium and the magnetic field. 632 

 633 

4. CONCLUSIONS 634 

The magneto-thermal instability of a rotating self-gravitating partially ionized Hall plasma 635 

permeated by a magnetic field has been investigated in the presence of the effects of electrical resistivity, 636 

finite electron inertia, porosity, permeability and viscosity of the medium. The general dispersion relation 637 

is obtained using normal mode analysis. This general dispersion relation is discussed for longitudinal and 638 

transverse modes of propagation for each cases when axis of rotation taking along and perpendicular to 639 

the magnetic field. In general, we find that the Jeans condition remains valid but the expression of the 640 



critical Jeans wave number is modified due to presence of thermal conductivity and radiative heat-loss 641 

function. Numerical calculations have been performed, in transverse mode of propagation, to obtain the 642 

dependence of the growth rate of the gravitational unstable mode on the various physical effects. We 643 

found that 644 

 645 

(1) Viscosity, permeability of porous medium and collision frequency of the two component partially 646 

ionized plasma have stabilizing effects in both longitudinal and transverse mode of propagation. Also 647 

it is found that the direction of axis of rotation, do not affect the stabilizing effects of these parameter. 648 

(2) Angular frequency of rotation has stabilizing effects in transverse mode of propagation when axis of 649 

rotation is along the magnetic field and fluid is in-viscid.  650 

(3) The electrical resistivity has a destabilizing effect. Also in the transverse mode of propagation 651 

electrical resistivity eliminate the effect of magnetic field from the condition of radiative instability and 652 

increase the value of critical wave number.  653 

(4) The magnetic field modifies the radiative instability criterion in the transverse mode of propagation.  654 

(5) The Hall current parameter does not affect the condition of instability but has a destabilizing effect in 655 

longitudinal mode of propagation. 656 

(6) Finite electron inertia modifies the growth rate of the instability in longitudinal as well as transverse 657 

mode of propagation. Also finite electron inertia, in transverse mode of propagation, modifies the 658 

condition of radiative instability when external magnetic field is present. 659 

(7) Porosity of the medium stabilizes the system by reducing the critical wave number in a rotating or a 660 

magnetized or a rotating magnetized medium. 661 

From the nature of the growth rate of instability presented in figs 1-7 with variation in various 662 

parameters we can conclude that the thermal conductivity, electrical resistivity and density-dependent 663 

heat-loss function have destabilizing influence on the instability of the fluid. It is also observed that the 664 

contribution of rotation, magnetic field, viscosity and collision frequency it to reduce the growth rate and 665 

stabilize the system. 666 

 667 

Appendix 668 

Non-dimensional form of (47) 669 

T∗� + T∗�(Ωz∗ + 2Ωu∗ + 4*+∗ + ¼∗) + T∗��Ωz∗ (2Ωu∗ + 4*+∗ + ¼∗) + 2*+∗(3Ωu∗ + 2*+∗ +  2¼∗) + p∗�O∗� + ΩÜ∗� +670 4Ω∗� + 2¼∗Ωu∗ + Ωu∗�� + T∗% �Ωz∗ ;ΩÜ∗� + 2¼∗Ωu∗ + 4¼∗*+∗ + 4Ω∗� + 4*+∗� + Ωu∗� + 4Ωu∗ *+∗= + 2Ωu∗ *+∗(Ωz∗ + Ωu∗ +671 

2*+∗ + ¼∗) +  p∗�O∗�(Ωu∗ + 3*+∗ + ¼∗) + *+∗;3ΩÜ∗� + 4¼∗Ωu∗ + 4¼∗*+∗ + 8Ω∗�= + Ω�∗� + 4Ω∗� + Ωu∗ ;ΩÜ∗� +672 

Ωu∗ ¼∗=� + T∗r �Ωz∗ .Ω�∗� + 4*+∗�¼∗ +Ωu∗ ¼∗ + 4¼∗*+∗Ωu∗ + 2*+∗ΩÜ∗� + Ωu∗ΩÜ∗� + *+∗ΩÜ∗� + 4Ω∗�¼∗2 + V∗�O∗�(¼∗Ωu∗ +673  3¼∗*+∗ + 2*+∗� + Ωu∗ *+∗) + Ωu∗ *+∗;*+∗Ωu∗ + 2¼∗Ωu∗ + 4*+∗Ωz∗ + 4¼∗*+∗ + 2Ωz∗ Ωu∗ + 2¼∗Ωz∗ + 2¼∗Ωz∗ + O∗�V∗� +674 

ΩÜ∗�= + *+∗;2*+∗ΩÜ∗� +Ωu∗ΩÜ∗� + Ω�∗� + 4Ω∗�*+∗ + 8Ω∗�¼∗ +  8Ω∗�Ωz∗ = + 2*+∗Ω�∗� + Ωu∗Ω�∗�� + T∗� �Ωz∗ .2*+∗�ΩÜ∗� +675 

Ωu∗ *+∗ΩÜ∗� + 3*+∗Ω�∗� + Ωu∗Ω�∗�2 + Ωu∗ *+∗;*+∗Ωz∗ Ωu∗ + Ωu∗ *+∗¼∗ + 4*+∗¼∗Ωz∗ + 2Ωu∗ ¼∗Ωz∗ + ¼∗p∗�O∗� + *+∗p∗�O∗� +676 

Ω�∗� + Ωz∗ ΩÜ∗�= + *+∗ .Ωu∗ *+∗ΩÜ∗� + 2*+∗¼∗p∗�O∗� + Ωu∗ ¼∗p∗�O∗� + 2*+∗Ω�∗� + Ωu∗Ω�∗� + 4Ω∗�*+∗Ωz∗ + 4Ω∗�¼∗*+∗ +677 



 8Ω∗�¼∗Ωz∗ =� + T∗ �Ωu∗ *+∗Ωz∗ .Ωz∗ ¼∗Ωu∗ *+∗ + *+∗p∗�O∗�¼∗ +Ωz∗ Ω�∗� + *+∗Ω�∗� + Ωz∗ *+∗ΩÜ∗� + 4Ωz∗ Ω∗�¼∗*+∗2 +678 

2*+∗�Ω�∗�
Ωz∗ + Ωu∗ *+∗Ωz∗ Ω�∗�� + .*+∗�Ωu∗Ωz∗ Ω�∗�2. 679 

  680 
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 710 

LIST OF SYMBOLS  711 

A  - No physical definition 712 

B - No physical definition  713 

b - Ratio of neutral and fluid densities 714 



c - Velocity of light [ms-1] 715 

cp - Specific heat of gas at constant pressure 716 

Sa - Adiabatic velocity of sound [ms-1] 717 

Si - Isothermal velocity of sound [ms-1] 718 

α   - No physical definition 719 

G - Universal gravitational constant [NM2kg -2] 720 

H - Strength of magnetic field in z direction [Am-1] 721 

H - Magnetic Field [Am-1] 722 

h - Perturbed magnetic field 723 

hx - Perturbation of Magnetic field in x direction 724 

hy - Perturbation of Magnetic field in y direction 725 

hz - Perturbation of Magnetic field in z direction 726 

i - iota (-1)1/2 727 

k - Wave number [m-1] 728 

kx -  Wave number in x direction [m-1] 729 

kx - Wave number in y direction [m-1] 730 

L  - Radiative heat-loss function [kg m-3 K] 731 

ρL  - Derivative of density- dependent heat-loss function  732 

TL
 - Derivative of temperature- dependent heat-loss function 733 

P0 - Initial fluid pressure 734 

g - Condensation of the medium 735 

T0 -  Initial Temperature  736 

t - Time 737 

ψ - Gravitational Potential 738 

V - Alfven velocity [ms-1] 739 

x - x direction 740 

z - z direction 741 

γ - Ratio of specific heat 742 

∆i - Diagonal minors of Hurwitz matrices 743 

ε - Porosity of the medium 744 

η - Electrical resistivity of the medium 745 

λ - Thermal conductivity of the medium 746 

ν - Kinematic viscosity of fluid 747 

νc - Collision frequency 748 

u - Velocity of fluid 749 

un - Velocity of neutral particle 750 

u - Perturbation of fluid velocity in x direction 751 



v - Perturbation of fluid velocity in y direction 752 

w - Perturbation of fluid velocity in z direction 753 

ρ0 - Initial density of ionized component 754 

ρn - Density of neutral components  755 

σ - Frequency of harmonic disturbance  756 

ωpe - Electron plasma frequency. 757 

ΩI - No physical definition 758 

Ω j - No physical definition 759 

Ω m - No physical definition 760 

Ω T - No physical definition 761 

Ω v - No physical definition 762 

Ωx  - Component of rotation in x direction 763 

Ωz  - Component of rotation in z direction 764 

ΩΩΩΩ  - Rotation 765 

 766 

Appendix A 767 

 768 

y = .4 �¹� + 2�2.  769 

y� = ��¹� .6 �¹� + 8�2 + ��Fb�
�F + 2Ωu*+ + �� + �iFbF

� + 4Ω��.  770 

yr = ��¹� .12Þ �¹� + 4 �¹F�F + 4 �Fb�
�F + 4�� + 6 iFbF

� + 16Ω� + 8Ωu*+2 + *+ .2Ωu� + 8Ω� +771 

2 iFbF
� 2 + 4� �Fb�

�F + 2� iFbF
� �.  772 

y% = ��¹� .8� �¹F�F + �¹³�³ + 2 �¹�Fb�
�³ + 8� �Fb�

�F + 6 �¹� �� + 6Ωz iFbF
� + 6� iFbF

� + 24 �¹� Ω�2 +773 

�¹� *+ .12 �¹� Ωu + 8Ωu� + 32Ω� + 6 iFbF
� 2 + *+ .2� iFbF

� + 4 �Fb�
�F Ωu + Ωu�*+ +774 

2Ωu iFbF
� + 4*+Ω�2 + �Fb�

�F .�Fb�
�F + 2�� + 2 iFbF

� + 8Ω�2 + i�b�
�F + %�iFb���F �.  775 

y� = ��¹� .2� �¹³�³ + 4�Ωz �Fb�
�³ + 4�� �Fb�

�F + 4 �¹F�F �� + 7� �¹iFbF
�F + 2 �¹F iFbF

�³ + 2 iFbF�Fb�
�³ +776 

2 i�b�
�F + 16 �¹F�F Ω� + 16Ω� �Fb�

�F + ���iFb�
�F 2 + �¹� *+ .8 �¹F�F Ωu + 6 iFbF�¹�F + 8Ωu �Fb�

�F +777 

12� �à� Ωu + 4Ωu�*+ + 6� iFbF
� + 6 ��iFbF

� + 16*+Ω� + 48 �¹� Ω�2 + *+ .4¾ �Fb�
�F Ωu +778 

2 iFbF
� Ωu*+ + 2 iFbF�Fb�

�³ + 2 i�b�
�F + 16 �Fb�

�F Ω� + 8Ωk iFb�
�F 2 + �²�Fb�

�F .�Fb�
�F + iFbF

� 2�.  779 



y� = ��¹��� .����¹³�³ + %���Fb��¹�³ + ��Fb�iFbF
�³ + �á�����¹� + �²�¹iFbF

�F + 8¾ �Fb�
�F Ωu +780 

  ��¹��F��� + �iFbF����� + ��¹F iFbF
�³ + ����¹iFbF

�F + %i�b�
�F + r��¹F �F

�F + �%�¹���F
� +781 

32 �Fb�
�F Ω� +  ���iFb�

�F 2 + �¹� .²�¹³�³ + �²F�Fb��¹�³ + �²�¹F iFbF
�³ + �²�Fb�iFbF

�³ + ��¹i�b�
�³ +782 

%�¹F �F
�F + ��F�Fb��¹�³ + %�iFb��¹��³ 2 + *+ .2 �Fb�

�F Ωu�*+ + ����Fb�iFbF
�³ + �²�Fb�iFbF

�³ +783 

i�b����F + 2Ωu ��bº
�� + 8Ω� �Fb�

�F *+ + %��iFb����F 2 + �Fb�
�F .�� �Fb�

�F + i�b�
�F + %��iFb�

�F +784 

4Ω� �Fb�
�F 2�.  785 

y� = ��¹��� .�²���¹³�³ + %²���Fb��¹�³ + �²�¹F iFbF
�³ + �²�Fb�iFbF

�³ + %�¹F ��F���F + �iFbF�¹�����F +786 

4 �Fb�
�F Ωu�*+ + ��¹F ��iFbF

�³ + �iFbF�Fb����³ + r�¹i�b�
�³ + �i�b����F +  ��¹F �F���F +787 

16 �Fb�
�F Ω�*+ + ��¹³ �F

�³ +  ��Fb��F�¹�³ + �����F�iFb�
� + ���¹�iFb�

�³ 2 + *+ .2� ��bº
�� Ωu +788 

������Fb�iFbF
�³ + 8Ω� ��bº

�� + ��Fbºi�
�� + ���iFb��F0�

�� 2�.  789 

y� = ��¹��� .����F�¹³�³ + ��Fb��¹��F���³ + �¹F iFbF�����³ + ������Fb�iFbF
�³ + �¹F ����iFbF

�³ + i�b��¹���³ +790 

%�¹³ �F���³ + %��b�iF�¹���³ + ��¹�Fb��F���³ 2 +791 

*+ .*+Ωu� ��bº
�� + 4Ω� ��bº

�� *+ + %��iFbF�F0����� + �Fbºi����³ 2�.  792 


