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ABSTRACT 
 
The magneto-thermal instability of an infinite homogeneous self-gravitating rotating partially 
ionized Hall plasma in the presence of viscosity, electrical resistivity, permeability, porosity, 
rotation and finite electron inertia is studied by means of linear perturbation analysis. A 
general dispersion relation is obtained using the normal mode analysis. Furthermore, the 
wave propagation parallel and perpendicular to the direction on magnetic field has been 
discussed. The stability of the system is discussed by applying Routh-Hurwitz criterion. For 
longitudinal propagation, it is found that the condition of radiative instability is independent of 
the magnetic field, collision frequency of neutrals with ions, Hall currents, finite electron 
inertia, porosity and viscosity; but for the transverse mode of propagation it depends on the 
strength of the magnetic field, rotation, porosity and electron inertia but independent of 
viscosity, permeability, electrical resistivity and collision frequency. From figures, we found 
that the effect of collision with neutrals, rotation, magnetic field and temperature dependent 
heat-loss function have a stabilizing influence while thermal conductivity and density 
dependent heat-loss functions have destabilizing influence on the self-gravitational instability 
of partially-ionized gaseous plasma. In addition, the classical Jeans condition regarding the 
rise of initial break up has been considerably modified due to the radiative heat-loss 
function.  
Keywords: Thermal instability, Partially ionized plasma, Rotation, Self-gravitation, and Hall 

current. 
 



 
 
 
 
 
 

 
 

NOMENCLATURES 
 
A  - No physical definition 
B - No physical definition  
b - Ratio of neutral and fluid densities 
c - Velocity of light [ms-1] 
cp - Specific heat of gas at constant pressure 
Sa - Adiabatic velocity of sound [ms-1] 
Si - Isothermal velocity of sound [ms-1] 
α   - No physical definition 
G - Universal gravitational constant [NM2kg -2] 
H - Strength of magnetic field in z direction [Am-1] 
H - Magnetic Field [Am-1] 
h - Perturbed magnetic field 
hx - Perturbation of Magnetic field in x direction 
hy - Perturbation of Magnetic field in y direction 
hz - Perturbation of Magnetic field in z direction 
i - iota (-1)1/2 
k - Wave number [m-1] 
kx -  Wave number in x direction [m-1] 
kx - Wave number in y direction [m-1] 
L  - Radiative heat-loss function [kg m-3 K] 

ρL  - Derivative of density- dependent heat-loss function  
TL  - Derivative of temperature- dependent heat-loss function 

P0 - Initial fluid pressure � - Condensation of the medium 
T0 -  Initial Temperature  
t - Time 
ψ - Gravitational Potential 
V - Alfven velocity [ms-1] 
x - x direction 
z - z direction 
γ - Ratio of specific heat 
∆i - Diagonal minors of Hurwitz matrices 
ε - Porosity of the medium 
η - Electrical resistivity of the medium 
λ - Thermal conductivity of the medium 
ν - Kinematic viscosity of fluid 
νc - Collision frequency 
u - Velocity of fluid 
un - Velocity of neutral particle 
u - Perturbation of fluid velocity in x direction 
v - Perturbation of fluid velocity in y direction 
w - Perturbation of fluid velocity in z direction 
ρ0 - Initial density of ionized component 
ρn - Density of neutral components  
σ - Frequency of harmonic disturbance  
ωpe - Electron plasma frequency. 
ΩI - No physical definition 
Ω j - No physical definition 



 
 
 
 
 
 

 
 

Ω m - No physical definition 
Ω T - No physical definition 
Ω v - No physical definition 
Ωx  - Component of rotation in x direction 
Ωz  - Component of rotation in z direction 
ΩΩΩΩ  - Rotation 
 
1. INTRODUCTION  
 
The problem of magneto-gravitational instability of interstellar matter is of considerable 
importance in connection with protostar and star formation in magnetic dust clouds. By 
considering plane wave perturbations to an infinite uniform medium, Jeans [1] has obtained 
that the disturbances would grow if their wave length exceeded a certain minimum �� is 

given by ��� = ���/	
, where S, G, and ρ denote the sound velocity, gravitational 
constant and density of the medium, respectively. Comprehensive investigations of the Jens 
instability in self-gravitating fluids and plasmas are contained in Chandrashekhar [2]. Owing 
to its relevance with protostar and star formation in magnetic dust clouds, it has attracted a 
wide attention in recent years. In this connection, many researchers [3-6] have discussed the 
problem of self-gravitational instability of plasma with different physical parameters such as 
viscosity, finite electrical conductivity, thermal conductivity, magnetic field and rotation.  
 
In this direction, partially-ionized plasma represents a state which often exists in the 
universe. The interaction between the natural and the ionized gas components becomes 
importance in the cosmology. Kumar et al. [7] investigated the problem gravitational 
instability of an infinite homogeneous self-gravitating, rotating medium carrying uniform 
magnetic field in the presence of Hall Effect. Recently, the importance of influence of neutral-
ion collision on the ionization rate in the solar photosphere, chromospahere and in cool 
interstellar cloud has pointed by Mamun and Shukla [8]. Jacobs and Shukla [9] have 
investigated the Jeans instability of partially ionized plasma under the effect of magnetic 
field. Borah and Sen [10] have studied the problem of gravitational instability of partially 
ionized plasma considering the effects of ions, electrons and charged dust grains.  
 
Along with this, the effects of a Hall current and electrical conductivity are important to 
understand the problems of magnetic reconnection and break-down of the frozen-in 
condition in interstellar dynamics and in several other astrophysical situations. Ali and Bhatia 
[11] leading to the conclusion that the Hall currents are destabilizing in nature. Recently, the 
effects of Hall current and electrical resistivity on rotating self-gravitating anisotropic 
pressure plasma using generalized polytrope laws have been explored by Prajapati et al. 
[12]. Shaikh et al. [13, 14] have examined the effects of Hall currents, finite conductivity, and 
viscosity on self-gravitational instability of thermally conducting partially ionized plasma in a 
variable magnetic field. 
 
In the past few years, it has been argued that thermal instability may be a reasonably good 
candidate, which can accelerate condensation, giving rise to localized structure which grows 
in density by loosing heat, mainly through radiation. The first comprehensive analysis of 
thermal instability in a diffuse interstellar gas is first given by Field [15]. Bora and Talwar [16] 
have discussed the magneto-thermal instability of self-gravitating plasma with generalized 
ohm’s law. Talwar and Bora [17] have analyzed the stability of a self-gravitating composite 
system of optically thin radiating plasma and stars. For cold stars, they have found that the 
thermal properties of the plasma have no effect on the situation and the system remains 



 
 
 
 
 
 

 
 

unstable with respect to at least one stellar mode. The concept of radiation transfer was 
suggested as a necessary element for the understanding of processes taking place in stars 
Trintsadze et al. [18]. The linear thermal stability of a medium, subject to cooling, self–gravity 
and thermal conduction studied by Gomez-pelaez and Moreno-insertis [19]. The effect of 
dust particles on the thermal instability of an expanding plasma in presence of equilibrium 
cooling analyzed by Bora and Baruah [20].  Prajapati et al. [21] have discussed the problem 
of self-gravitational instability of rotating viscous Hall plasma with arbitrary radiative heat-loss 
functions and electron inertia. Recently, Kaothekar and Chhajlani [22] investigated the 
problem of self-gravitational instability of partially ionized plasma with radiative effects. The 
effect of radiation and electron inertia on the Jeans instability of partially ionized plasma 
have been studied by Dangarh et al. [23] and concluded that the Jeans criterion of instability 
is modifies to radiative instability criterion due to radiative heat-loss function. The effect of 
radiative heat-loss functions and finite ion Larmor radius (FLR) corrections on the 
gravitational instability of infinite homogeneous viscous plasma has been investigated by 
Kaothekar and Chhajlani [24]. Patidar et al. [25], in recent study, consider the problem of 
radiative instability of rotating two component plasma under the effect of electron inertia but 
does not include the effect of Hall current and permeability. 
 
In all the above cited examples, we find that none of the authors have considered the 
combined effects of neural-ion collision, rotation, Hall current, permeability, porosity, finite 
electron inertia and self-gravitation on the magneto-thermal instability of finitely electrically 
conducting, viscous partially ionized plasma flowing through a porous medium. Thus, in the 
present analysis, our aim is to analyze the magneto-thermal instability for a plasma model 
endowed with several mechanism namely Hall current, electrical resistivity, rotation, finite 
electron inertia, neutral-ion collision frequency, ion viscosity, permeability, porosity, and self-
gravitational. This work is applicable to understand the phenomenon of small structure 
formation, magnetic reconnection phenomenon in space plasma.  

 
2. LINEARIZED PERTURBATION EQUATIONS AND DISPERSION RELATION 
 
We assume that the two components of the partially ionized plasma (the ionized fluid and 
the neutral gas) behave like a continuum fluid and their state velocities are equal. The 
effects of a magnetic field, field of gravity, and the pressure on the neutral components are 
neglected. Also it is assumed that the frictional force of the neutral gas on the ionized fluid is 
of the same order as the pressure gradient of the ionized fluid. Thus, we are considering 
only the mutual frictional effects between the neutral gas and the ionized fluid. It is assumed 
that the infinite homogeneous plasma medium is embedded in uniform magnetic field �(0,0, �). 
 
The standard linearization process is applied to linearize the basic MHD Set of equations of 
the problem. We suppose all the physical quantities are the sum of their equilibrium and 
perturbed parts i.e. � = �� + �′(��, �), � = � + ℎ(��, �), � = �� + �′(��, �), 
 = 
� + 
′(��, �), � = �� + �′(��, �), � = �� + �′(��, �), ℒ = ℒ� + ℒ′(��, �). It is considered that the fluid motion is 
steady with �� = 0. Thus the linearized perturbation equations governing the motion of 
hydro-magnetic thermally conducting two component plasma, rotating with a uniform angular 
velocity are given by 

 ��′�� = −  !" #�′+ #�′+  $%!" (# × ') × � + !(!" )*+�,′ − �′- + ) .∇��′ − �′012 +2(�′× 4),                                                                                                (1) 
 



 
 
 
 
 
 

 
 

��,′�� = −)*(�,′ − �′),                               (2) 
 5 �!′�� = −
�#. �′,                                                  (3) 
 ∇��′ = −4�	
′,                                                       (4) 
  (89 ) �!′�� − 8(89 ) :"!"

�!′�� + 
�+ℒ!
′+ ℒ;�′- − �∇��′ = 0,                  (5) 

 :′:" = ;′;" + !′!",                                                                                 (6) 

 �'�� = # × (�′ × �) + <∇�' −  *$%>? @# × A(# × ') × �BC +  *D
EFGD ��� ∇�',         (7) 

 #. ' = 0.                                                                                 (8) 
 
where the symbols, G denotes gravitational constant, ) is kinematic viscosity, )* is the 
collision frequency between two components, H  is the medium permeability, λ is the 
coefficient of thermal conductivity, η is electrical resistivity, γ is adiabatic index, Ω (Ωx, 0, Ωz) 
is rotational frequency, c is velocity of light, N is number density of electron, e is the charge 
of electron, and �I denote velocity of neutral particles. Here in equation (5), ℒρ,J denote the 
partial derivatives of density dependent (Kℒ/K
); and temperature dependent (Kℒ/K�)! 
heat-loss functions respectively. 
 
We now solve equation (1) to (8) using normal mode analysis with assumption, that all the 
perturbed quantity vary as 

exp. AL(MNO + MPQ) + R�B.                                  (9) 
 

where σ is the frequency of harmonic disturbances, kx,z are the wave numbers in transvers 
and longitudinal directions to the magnetic field, such that MN� + MP� = M2. eqn. (5) and eqn. (6) 
yield the following relation between δp and δρ:  
 S� = .TUVWXDVUY 2 S
,                                    (10) 

 
where �Z = [\��/
� is the adiabatic velocity of sound in the medium and the parameters 
A and B are defined by ] = (\ − 1) .ℒ;�� − ℒ!
� + _`D;"!" 2,   

 a = (\ − 1) .ℒb;"!":" + _`D;":" 2.                                       (11) 

 
We obtain the four linear equations in terms of the amplitude components �, c, d, � as 



 
 
 
 
 
 

 
 

 .e + `DfDZg 2 � − (h + 2ΩP)c + i`j`D Ω;�  � = 0.               (12) 

 (h + 2ΩP)� + .e +  `kDfDZg 2 c − 2ΩNd = 0.                             (13) 

 2ΩNc + ed + i`k`D Ω;�  � = 0.                                                      (14) 
 .i`j`DfDZg 2 � − (LMNh + 2LMNΩl − 2LMPΩN)c − +R5e + ΩJ�-� = 0. (15) 

 
where � = +
′/
�-, is the condensation of the medium, m = +�/[4�
�- is the Alfven velocity. 
Also we have assumed the following substitutions to avoid the complexity in algebraic 
calculations 
 n = .e + `DfDZg 2,     n� = .e + `kDfDZg 2,     no = +5Re + ΩJ�-,    

e = .R + Rp)qR+)q + Ωr2, s = (t� + MP�h�M�),   h = . *u$%>?2,   t = (vR +Ωw),   

p = .!(! 2,   Ωw = +<M2-,   Ωr = ) .M2 + 1H12, Ω;� = xVΩyDUΩzDVUY {,   

Ω|� = (M�] − 4�	
�a),   Ω�� = (M��Z� − 4�	
�),   h = .`kD}m2M2
s 2.  

 
Now we can write equation (12)-(15) in the matrix form, to obtain the dispersion relation, as 
 

 [X] [Y] = 0.                                    (16) 
 

Here [X] is the fourth order matrix and [Y] is the single column matrix of elements [�, c, d, �]. 
The vanishing of [X] gives the following equation,   
 

−no~n +n�e + 4ΩN�- + e(h + 2ΩP)�� + `jDΩbD`D �4eΩP� + Z�>D`DfD
g +4tM2m2ΩO2s+eh12+4ΩQh1e+MQ2 M24ΩO2Ω�2n1−2ΩOMOMQΩ�22ΩQM2+m2MQ2hsn1+e−h1M2m2s−2ΩQtm2s=0.         (17) 

 
The dispersion relation (17) shows a general dispersion relation for wave propagation in an 
homogeneous self-gravitating partially ionized plasma incorporating the effects of magnetic 
field, rotation, thermal conductivity, radiative heat-loss function, Hall current, electrical 
resistivity, permeability, finite electron inertia, viscosity and porosity of the medium. We find 
that in (17) the terms due to the Hall current have entered through the factor Q.  
The preceding dispersion relation (17) is the modified form of the dispersion relation 
obtained by Dangarh et al. [23] due the consideration of Hall current, rotation, viscosity, 



 
 
 
 
 
 

 
 

permeability, porosity, and electrical resistivity, excluding electron inertia. Also ignoring the 
effect of rotation, Hall current and neutral particles the above dispersion relation reduces to 
Kaothekar and Chhajlani [24] excluding permeability and FLR correction. Again equation 
(24) gives the same result as Bora and Talwar [16] by ignoring rotation permeability and 
neutral ion collision in our case. Now, we will reduce (17) in two different modes of 
propagation, parallel and perpendicular to the magnetic field to investigate the effects of 
considered parameter, separately and simultaneously. 

 
3. ANALYSIS OF THE DISPERSION RELATION 
 
3.1 Longitudinal Mode of Propagation (� ∥ �)  
 
For this case we assume all the perturbations longitudinal to the direction of the magnetic 
field i.e. (kz = k, kx = 0). This is the dispersion relation reduces in the simple form to give 
  

−n n�noe−4n noΩN� − eno .}m2M4
s + 2ΩP2� + 4n ΩN�Ω;�  = 0.    (18) 

 
Equation (18) gives the general dispersion relation for an infinite homogeneous, uniformly 
magnetized, self-gravitating, rotating, partially ionized Hall plasma having finite electrical and 
thermal conductivity, porosity, permeability, viscosity, and radiative heat-loss functions when 
the disturbances are propagating parallel to the magnetic field. Again for simplicity, the 
dispersion relation (18) is discussed for axis of rotation is along and perpendicular to the 
magnetic field separately. 

 
3.2 Axis of Rotation along Magnetic Field 
 
When the axis of rotation is along the magnetic field, we put ΩN = 0 and ΩP = Ω, the 
dispersion relation (18) reduces to 
 −noe .n n� + 4Ω� + M4}Dm4M4

s2 + 4Ω }m2M4
s 2 = 0.    (19) 

 
This dispersion relation (19) represents awave propagation, in longitudinal direction with axis 
of rotation is parallel to magnetic field, for self-gravitating partially ionized plasma under 
influence of Hall effect, radiative effect, electrical conductivity, electron inertia, viscosity, and 
permeability of porous medium. Dispersion relation (19), on substituting the values of N1, N2, 
N3, M, and D, has three different independent modes of propagation corresponding to 
equations. 
 R� + R� + Ωr)* = 0.           (20) 

 R� + R�v + R�v� + R�vo + R$v$ + Rov� + R�v� + Rv� + v� = 0.    (21) 
 

R$ + Ro(� + a) + R� �)*AΩr + (1 + p)aB + Ω�D� + aΩr� + R �)* �Ω�D� + aΩr� +
ΩI25+)qΩI25=0.                                             

 (22) 



 
 
 
 
 
 

 
 

 
[Here � = A)*(1 + p) + ΩrB. and v  to v� in appendix A] 
 
The first of these, equation (20) is identical to Dangarh et al. [23] when the contribution 
viscosity and permeability is ignored and also similar to Patidar et al. [25] for non permeable 
medium. 
 
Equation (20) does not admit a positive real root or complex root whose real part is positive, 
meaning thereby that the system is stable. Therefore (20) represents the stable damped 
mode due to viscosity of medium, modified by the effect of collision frequency and 
permeability. Hence, we can conclude that the viscous partially ionized fluid is more stable 
then viscous fluid. 
 
The second one, equation (21) represents Alfven mode of propagation coupled with the 
effects of Hall current, collision frequency, viscosity, permeability, rotation, electrical 
resistivity, and electron inertia. Equation (21) is the same as obtained by Patidar et al. [25] 
when ignoring the effect of Hall current and permeability. Also (21) is the modified form of 
dispersion relation of Prajapati et al. [21] due to the effect of neutral-ion collision and porosity 
of the medium. Again the dispersion relation of Kothekar and Chhajlani [22] can be modify in 
form of (21) by considering the effect of Hall current, electron inertia, rotation, porosity and 
permeability of porous medium in their case. 
  
For perfectly electrically conducting medium [Ωw = 0] and in the absence of collision 
frequency and Hall current @)* = h = 0C the dispersion relation (21) reduces to   
 R$ + Ro2Ωr + R� �Ωr� + �fD`D

� + 4Ω�� + R ��Ω�fD`D
� � + f�`�

�D = 0.  (23) 

 
The stability of the system, represented by preceding equation, is discussed using Routh-
Hurwitz criterion, since all the coefficients of equation (23) are positive that the necessary 
condition for instability of the system is satisfied. To obtain the sufficient condition, the 
principal diagonal minors of Hurwitz matrix must be positive, which are shown below 
 ∆ = 2Ωr > 0. 

 ∆�= 2Ωr �Ωr� + 2 fD`D
� + 4Ω��  >  0. 

 ∆o= 4Ωr� fD`D
� ~Ωr� + 4Ω�� > 0. 

 ∆$= f�`�
�D ∆o> 0. 

We see that all ∆’s are positive so we find that a magnetized, rotating, viscous plasma in 
perfectly electrically conducting medium is a stable system. For an in-viscid fluid, @Ωr = 0C, 
(24) reduces to  
 R$ + R� ��fD`D

� + 4Ω�� + f�`�
�D = 0.    (24) 

 



 
 
 
 
 
 

 
 

It is evident from equation (24) that  
 

R ,�� = − �fD`D
� + 2Ω�� ± 2Ω .fD`D

� + Ω�2 /�
.  (25) 

 
Thus, we see in equation (25), the two Alfven waves modified by electron inertia and 
rotation, moving in opposite direction. Now for in-viscid [Ωr = 0], finitely conducting medium 
in the absence of neutral particles [)* = 0], eq. (21) can be written as 
 R�v� + R2Ωwv + Ωw� + 2h�M$ = 0.    (26) 

 R$v� + Ro2Ωwv + R�~Ωw� + 2m�M�v + h�M$ + 4Ω�v�� + R2Ωw~m�M� +v4Ω2+m4M4+4Ω2Ω�2+4Ω2h2M4+4ΩhM4m2=0.   (27) 
 

Equation (26) represents the effect of Hall current and finite electrical resistivity. It may be 
remarked that due to resistivity and Hall current, mode of propagation is periodically in 
nature which is quenched by resistivity parameter as exp. (−<M�)� and in the absence of 
Hall current this mode is damped stable mode due to electrical resistivity. Equation (27) is 
fourth degree equation having all its coefficients positive and the principle diagonal minors of 
Hurwitz’s matrix are also positive hence this mode shows stability.  
 
The last one, equation (22) represents combined effect of radiative heat-loss function, 
thermal conduction, and self-gravitation. It is evident from (22) that this mode is independent 
of the effects of a magnetic field, electrical resistivity, Hall current, rotation, and electron 
inertia. In the absence of neutral-ion collision, and porosity (22) is reduces to Prajapati et al. 
[21] also (22) is similar to Patidar et al. [25] by ignoring the effects of permeability and Hall 
current.  
 
The dispersion relation (22) is a fourth degree equation which may be reduced to particular 
cases so that the effect of each parameter is analyzed separately. 
 
For thermally non-conducting, non-radiating, non viscous, self-gravitating fully ionized fluid 
we have [A = B = )*= ) = 0], and for non porous medium [5 = 1], the dispersion relation (22) 
reduces to R� + �Z�M� − 4�	
� = 0.                (28) 

 
This is the same equation obtained by Jeans for gravitational instability of infinite 
homogeneous self-gravitating fluid. It is clear from equation (28) that when Ω�� < 0, the 
product of the roots of equation (28) must, therefore, be negative. This implies that at least 
one root of R is positive. Hence, the system is unstable when  

Ω�� = (�Z�M� − 4�	
�) < 0. 
 

M <  M� = .$%�!"WXD 2 /�
.                  (29) 

 



 
 
 
 
 
 

 
 

where, kj is the Jeans wave number. The fluid is unstable for all wave number M <  M�. It is 
evident from (29) that the presence of neutral particles does not alter the Jeans’ criterion of 
instability. 
 
For non-radiating but thermally conducting, viscous and self-gravitating fluid having neutral 
particles, (22) reduces to 
 

R$ + Ro(� + Ω`) + R� �Ωr)* + �Ω` + Ωy1D
� � + R �)* xΩy1D

ε
+ ΩrΩ`{ + Ω�Ωy1D

� � +
��Ω�Ωy1D

� = 0.                                                                                              (30) 

where Ω` = +�\M�/
�q:- and q: is the specific heat of the gas at constant pressure, Ω� � =(�i�M� − 4�	
), and �i = [�/
, is the isothermal velocity of the sound. It is clear from the 
constant term of equation (30) that the system leads to instability if Ω� � < 0, which gives �i�M� − 4�	
� < 0, and corresponding wave number as 
 

M <  M� = x$%�!"W�D { /�
.                           (31) 

where M�  is the modified Jeans wave number for thermally conducting system. On 
comparing equation (29) and (31) we observe that the adiabatic sound velocity is replaced 
by isothermal one in the Jeans expression for thermally conducting medium. Again from (31) 
we can say that the collision between neutral and ionized component does not affect the 
Jeans expression for gravitational instability.  
 
It is clear from equation (31) that, when γ > 1 then (�Z > �i) therefore owing to thermal 
conduction Jeans wave number is increased as a result the critical wavelength is reduced. 
Thus the size of initial break up is reduced; the destabilizing effect is produced in the 
interstellar medium. If we consider non-gravitating but thermally conducting plasma 
incorporated with radiative heat-loss function then the expression for critical wave number is 
given as  

M < M�� =  M� � 8ℒbℒb 9  "ℒ b
¡ /�

.                              (32) 

 
Here M�� is the modified critical wave number due to inclusion of radiative heat-loss function. 
Hence, for wave number M < M��, the system is unstable. It is clear from (32) that in this case 
the critical Jeans wave number depends on the derivatives of the heat-loss function with 
respect to local temperature and local density in the configuration. The critical Jeans wave 
number vanishes if the heat-loss function is independent of temperature (ℒ; = 0) and √\ 
times of original critical Jeans wave number if the heat-loss function is purely temperature-
dependent +ℒ! = 0-. It may be remarked that the critical wave number decreases or 
increases as the heat-loss functions respectively increases or decreases with increases in 
density. 
 
Owing to simultaneous effect of all the parameters represented by the original dispersion 
relation (22), the condition of instability obtained from eq. (22) form constant term is 

 



 
 
 
 
 
 

 
 

Ω|� = �M� . ��ℒJ − 
�ℒρ  + _`D;"!" 2 − 4�	
� .;"!"ℒb:" + ;"_`D
:" 2� < 0.    (33) 

 
It is evident from (33) that the Jeans’ criterion of instability is modified due to inclusion of 
thermal conductivity and radiative term. Also in other word we can say that, the condition of 
thermal instability obtained by Field [15] is modified due to self-gravitation. The inequality 
(33) is similar to that of obtained by Bora and Talwar [16] and also to that of Patidar et al. 
[28] and can be solved to get the following expression of critical Jeans wave number 
 

M�o  =   �1/D £¤�$%�!"W�D + !"Dℒ _;" − !"ℒb_ �  ± ¥x$%�!"W�D + !"Dℒ _;" − !"ℒb_ {� +   �%�!"Dℒb_W�D ¦ /�§.      
 (34) 

 
It may be noted here that modified critical Jeans wave number involves, derivatives of 
temperature dependent and density dependent heat-loss function and thermal conductivity 
of the medium. If we assume that the radiative heat-loss function is purely temperature 
dependent (ℒρ = 0), increases with temperature (ℒJ > 0) then (35) is reduces to (31) to 
obtain the condition of monotonic instability. However, if instead the arbitrary radiative heat-
loss function decreases with temperature (ℒJ < 0), the instability arises for k2 lying between 
the values (|ℒ;|/�) and (4�	
�/�i�) for parallel propagation. Furthermore, if it is considered 
that heat-loss function is purely density dependent (ℒJ = 0) then the condition of instability is 
given as 

M < M�$ =  x$%�!W�D  +  !Dℒ _; { /�
.                     (35) 

 
It is evident from (35) that the critical wave number is increased or decreased, depending on 
whether the arbitrary radiative heat-loss function is an increasing or decreasing function of 
the density.  
 
In order to discuss the dynamical stability of the system represented by (22), we applied the 
Routh-Hurwitz criterion. According to this criterion, the necessary condition is that all the 
coefficients of the polynomial equation (22) should be positive. In order to satisfy the 
sufficient condition, we calculate the minors of the Hurwitz matrix formed by these 
coefficients, which are 
 ∆ =  (� + a) > 0.   t©   \ > 1  

   

∆�=  ��Ωr)* + a)* ΩyD
ε

+ Ω�ΩyD
ε

+ YΩyD� + �a� + ��a − ΩzD
ε

�  >  0.  

 

∆o = ��aΩr�)*� + ΩyD��DΩ�ª
ε

+ ªΩ���ΩzD� + ��)*Ωra� + ªD��YΩyD� + ªDΩzDY� +
�)*Ωrao + ��YDΩyDª� + ��Ω�YDΩyD� + ��YΩy�� + ΩyDΩzDY

ε
+ Y��DΩ�ΩyD� + Ω�D��YΩyD� +



 
 
 
 
 
 

 
 

ΩyDΩzDY���D + ΩyDΩzDΩ��D + ��YΩy�� + ��Ω�Ωy�� + ��YDΩzD� + Ω�YDΩzD� − ΩzD
ε

x��ΩyD� + ΩzD
ε

+
Ωr)*a + ��)* + 2�)*a2� > 0.  

 

∆$ =  ��ΩzD∆«� > 0.  
 

Since these all ∆’s are positive, thereby, satisfying the Routh-Hurwitz criterion, according to 
which equation (22) will not include any positive real root of σ or a complex root whose real 
part is positive. Therefore the system represented by (22) will remain stable if Ω|� =@M�] − 4�	
�aC > 0. Thus we find that for longitudinal wave propagation the gravitating 
plasma is stable if the condition @M�] > 4�	
�aC is satisfied. 
 
3.3 Non-Gravitating Hydromagnetic Fluid 
 
In this section, for non-gravitating hydromagnetic fluid, two modes of propagation are similar 
to as discussed in equations (20) and (21) but the third mode of propagation is quite different 
from that of discussed in (22) for self-gravitating fluid. The dispersion relation for non-
gravitating viscous fluid subjected to general heat-loss function and Hall current with thermal 
and electrical conductivity flowing through porous medium is obtained from the third factor of 
equation (19) and given as 
 R$5 + Ro(� + a)5 + R�@)*AΩr + (1 + p)aB5 + �Z�M� + aΩr5C + R@)*�Z�M� +

εaΩv)q+M2]+)qM2]=0.                                                       (36) 
 

Evidently, if ] < 0 then above equation will posses at least one positive root implying thereby 
instability of the system. The condition of instability for non-gravitating hydromagnetic fluid is 
given as 
 

 .ℒ;�� − ℒ!
� + _`D;"!" 2 < 0.   
 

 The critical wave number is given as 
 

M�o =  ­+!"ℒ 9ℒb;"-!"_;" .     (37) 

 
We notice the effect of neutral-ion collision does not affect the condition of instability but its 
presence modifies the dispersion relation (36) as well as the growth rate of instability of and 
non-gravitating radiating Hall plasma medium. Also we find that condition of instability (37) is 
independent of viscosity, Hall current, rotation, electrical resistivity, porosity and finite 
electron inertia and is identical to Field [15]. It is clear from equation (37) that when the 
arbitrary radiative heat-loss function is independent of temperature of the configuration (i.e. ℒ; = 0), then  

M�$ = 
�­ℒ _; .      (38) 

 



 
 
 
 
 
 

 
 

If inequalities (38) is applied for increases with temperature (ℒJ > 0), then the condition of 
monotonic instability is given as M < M�$. However, if instead the arbitrary radiative heat-loss 
function decreases with temperature (ℒJ < 0), the instability arises for k2 lying between the 
values (|ℒ;|/�) and +
�ℒ!/��- for parallel propagation. 
 
The mechanism underlying the thermal instability is a heat-loss function which decreases 
with temperature and increases with density and is important to analyze the instability 
phenomena of various astrophysical problems, such as coronal condensations. For the solar 
corona, the heat-loss function depends on local density and temperature so that the above 
conditions of thermal instability are satisfied, resulting in, the local temperature falls, the local 
pressure decreases leading to condensation of the cool plasma which radiates faster 
because of density rise. 
 
3.4 Axis of Rotation Perpendicular to The Magnetic Field 
 
In the case of a rotation axis perpendicular to the magnetic field we put Ωx = Ω , and     Ωz = 
0 in the dispersion relation(18) and this gives. 
 −e �n n�no + no .f�`�`�®D

TD 2 − 4RΩ�n � =  0.        (39) 

 
This dispersion relation is the product of two independent factors. These factors show the 
mode of propagations incorporating different parameters as discussed below.  
 
Dispersion relation (39) has two different independent modes of propagation corresponding 
to equations. 
 R� + R� + Ωr)* = 0.             (40) 
 R � + R   ̄ + R �¯� + R°¯o + R�¯$ + R�¯� + R�¯� + R�¯� + R$¯� + Ro¯°  +R�  ̄� + R  ̄ +  ̄� = 0.                       (41) 

 
The first of these, (40) is similar to (20) and represents the combined stable effect of 
viscosity, permeability and neutral ion collision in damped oscillatory form. 
 
The last one, (41) is, very lengthy and complex to write here, but to discuss the condition of 
instability we need the constant term of the last coefficients. Equation (41) represents the 
general dispersion relation for an infinite homogeneous, rotating, thermally conducting, self-
gravitating, and viscous partially ionized plasma flowing through porous medium 
incorporating radiative heat-loss function and magnetic field, when the disturbances are 
propagating along the direction of magnetic field and the axis of rotation is perpendicular to 
the direction of magnetic field. The constant term of the last coefficient of (41) is given by 

 ̄� = )*oΩ|� �Ω�Ω±� xΩ�Ω±«�« + �Ω�Ω±}D`�
�« + �fD`DΩ±D�« + �fD`D}D`�

�« { +h4M8v4Ωv2+m4M4Ω�2v4+m4M8h2v4.  
 

The condition of instability is obtained from constant term of equation (41) and gives as 
 



 
 
 
 
 
 

 
 

Ω|� =  M�] − 4�	
�a < 0.         (42) 
 

The above condition of instability is identical to the condition (33) for radiative instability. We 
find that the condition of instability for this mode of propagations, in both the cases of 
rotation parallel and perpendicular to a magnetic field is the same and there is no effect of 
the direction of rotation on the instability condition. Also we can conclude that the presence 
of finite electron inertia, Hall current porosity and neutral particles does not alter the 
condition of radiative instability in longitudinal mode of propagation, but presence of these 
parameters modifies the growth rate of instability. 
 
3.5 Non-Gravitating Hydromagnetic Fluid  
 
In this case, for non-gravitating hydromagnetic fluid, first mode of propagation is identical to 
equations (20) hence no need to be discussed here but the last factor is affected and for non 
gravitating hydromagnetic fluid the coefficient of the last term of (41) reduces to  
 )*o �Ω�Ω±� xΩ�Ω±«�« + �Ω�Ω±}D`�

�« + �fD`DΩ±D�« + �fD`D}D`�
�« { + x}�`³

�� Ωr� + f�`�Ω±D�� +m4M8h2v4M2]=0 .                                                        
 (43) 

 
The dispersion relation (43) shows the combined influence of viscosity, permeability of 
porous medium, rotation, Hall current, electrical and thermal conductivity on thermal 
instability of magnetized non-gravitating plasma. 
 
Equation (43) can be converted to the equations of previous work of Field [15] and Ibanez 
[26], by ignoring the effect of finite electron inertia, viscosity, rotation, finite electrical 
resistivity and collision frequency between two components of partially ionized plasma and 
setting molecular weight unity in their cases. 
 
Hence the present results are the modified results of Field [15] and Ibanez [26] with these 
considered parameters. The condition of instability of Field [15] and Ibanez [26] is modified 
due to our consideration of self gravitation of the medium. The growth rate of instability of 
this dispersion relation will also be modified due to presence of these parameters. If we 
ignore the effects of finite electron inertia, finite electrical resistivity, collision frequency and 
viscosity (43) reduces to the one similar to that obtained by Aggarwal and Talwar [27]. 
 
3.6 Transverse Mode of Propagation (� ⊥ �) 
 
For this case we assume all the perturbations are propagating perpendicular to the direction 
of the magnetic field, for, our convenience, we take kx = k, and kz = 0, the general dispersion 
relation (17) reduces to  
 − µRe$ + Reo fD`D

Z + eoΩ;� + R4e�ΩN� + 4ΩN�eΩ;� + fD`D
Z 4ReΩN� +4e2ΩQ2R= 0.                            (44) 

 
We find that in the transverse mode of propagation the dispersion relation (44) is modified 
due to the presence of neutral particles, thermal conductivity, finite electron inertia, rotation, 



 
 
 
 
 
 

 
 

viscosity, magnetic field, permeability, porosity of the medium and radiative heat-loss 
functions. It is noted that the equation (44) is independent of Hall parameter in other words 
we can say that there is no influence of Hall current in transverse direction of propagation. In 
the absence of viscosity, permeability, porosity of the medium, rotation, and partially-ionized 
plasmas, (44) reduces to that of Bora and Talwar [16] in dimensional form.  

 
3.7 Axis of Rotation Along Magnetic Field 
 
When the axis of rotation is along the magnetic field, we put Ωx =0, and Ωz = Ω in the 
dispersion relation (44) and this gives. 
 e� .Re� + Re fD`D

Z + eΩ;� + 4RΩ�2 =  0.               (45) 

 
This dispersion relation (45) shows the simultaneous influence of viscosity, permeability, 
rotation, thermal conductivity, radiative heat-loss functions and porosity of the medium on 
the self-gravitational instability of the hydromagnetic fluid plasma. Dispersion relation (45) 
has two different independent modes of propagation corresponding to equations. 
 R� + R� + Ωr)* = 0.                                  (46) 

 R� + ¶  R� +  R�¶� + R$¶o + Ro¶$  +  R�¶� + R¶� + ¶� = 0. (47) 
where  
 ¶ = �Ω±

α
+ 2� + a�.  

¶� = �Ω±� (2� + a) + 2Ωr)* + �(� + 2a) + fD`D
� + ΩyD� + 4Ω��.  

¶o =  �Ω±� xΩyD� + �� + 2·a + 4Ω�{ + 2Ωrν¸ .� + a + Ω±� 2 + � xΩyD� + �a{ +M2v2v�+a+)c+Ωº25+)cΩ»2ε+4Ω2a+8Ω2)c.  

 

¶$ =   �Ω±¼ xΩzD� + ��a + � + �½ΩyD
ε

+ 4Ω�a{ + ¾D`D
� (�a + a)¸ + �)¸) +)cΩvΩv)q+2�a+2�Ω�v+2aΩ�v+M2v2v+Ω»25+�Ωº25+)c�Ω»25+Ωº25+4Ω2)q+8Ω2a+8Ω2Ω�v.  

 

¶� =  �Ω±� x��ΩzD� + ª��ΩyD� + ªΩzD� { + Ωr)* xΩ���Ω±� + Ωr)*a + �ªYΩ±� + YfD`D
� +

��fD`D
� + Ω|� + Ω±ΩyD�� 2 + )* xΩ���ΩyD� + ªYfD`D

� + ªΩzD� + $ΩD��Ω±� +
4Ω�a)* + �ΩDYΩ±� 2�  

 



 
 
 
 
 
 

 
 

¶� = �Ωr)* Ω±� xΩ±
α

aΩr)* + )* YfD`D
� + Ω±ΩzD�� + ��ΩzD� + Ω±��ΩyD�� + $Ω±ΩDY��� { +�)qΩ�Ωº2v.  

 

¶� = �ν�DΩ�Ω±ΩzD�� ¡.   

 
The first of these, is identical with equation (20) and represents a viscous type of damped 
stable mode modified by the effects of viscosity collision frequency. 
 
The second one, (47) represents the effect of simultaneous inclusion of the viscosity, 
thermal conductivity, radiative heat-loss function, permeability, porosity, collision frequency, 
and rotation on the magneto-gravitational instability of plasma medium when the wave 
propagation is assumed to be perpendicular to the prevalent magnetic field. It can be seen 
that when Ω|� < 0, the constant term of the dispersion relation (47) will be negative. This 
implies that at least one root of is positive, hence the system is unstable. So the condition of 
instability for transverse mode of propagation is given as  

 

Ω|� = �M� . ��ℒJ − 
�ℒρ  + _`D;"!" 2 − 4�	
� .;"!"ℒb:" + ;"_`D
:" 2� < 0.  (48) 

 
This condition of instability in transverse mode of propagation is identical to the condition of 
instability (33) for longitudinal mode of propagation, which has already been discussed. In 
the absence of viscosity and neutral particles 
 

R$ + Ro �Ω±� + a� + R� �Ω±� a + fD`D
� + Ω¿D� + 4Ω�� + R �Ω±� xΩ¿D� + 4Ω�{ +M2v2va+Ωº25+4Ω2a+Ω�vΩº25+4Ω2a=0.     (49) 

The instability of the system in this case will be governed by the condition +Ω|� + 4Ω�a5- < 0; 
i.e., the system will be unstable for all  M < M�  , where  
 

√2M�  = ­Ào ± ~Ào� + Áo� /�
,       (50) 

 Ào = x!"Dℒ _;" + $%�!"W�D − !"ℒb_ − $�ΩD
W�D {,   Áo =  �ℒb_W�D +�	
�� − 5Ω�-. 

 
This is the modified condition of instability of radiative instability due to the effect of rotation. 
From (50) we conclude that rotation decreases the value of critical wave number and tries to 
stabilize the. Here we notice that the rotation affects the radiative instability criterion in 
transverse mode of propagation when medium is in-viscid and axis of rotation is taken 
parallel to the magnetic field.  It means that the viscosity parameter removes the effect of 
rotation. Again in the absence of electrical resistivity we can write (47) in the form. 
 



 
 
 
 
 
 

 
 

Ro + R�a + R �fD`D
� + Ω¿D� + 4Ω�� + �`DrDY� + ΩzD� + 4Ω�a� = 0.  (51) 

 
Here we get the condition of instability if .Ω|� + 4Ω�a5 + `DrDY�� 2 < 0. The system will be 

unstable for all  M < M�   where  
 

M� � = ­Â�±~Â�DUÃ��1/D
�  ,     (52) 

 

À$ = Äx!"Dℒ _;" + $%�!"W�D − $�ΩD
W�D { x1 + �fD

ÅW�D{9 − !"ℒb_ Æ,     Á$ =  �ℒb_W�D +�	
�� − 5Ω�-. 

 
Reviewing the condition of instability (52), i.e. the value of the critical wave number, we can 
conclude that presence of magnetic field and rotation modifies the condition of instability. 
Hall current does not affect the condition of instability in this mode of propagation. It is also 
noted that when the medium is finitely electrical conducting the effect of magnetic field, in 
condition of instability, vanishes.  
 
For our convenience to show a better insight, the graphical presentation of the exact growth 
rate of the system represented by (47) can be written in non-dimensional form (Appendix) 
introducing dimensionless quantities, assuming (
 ≫ 
È) so that p ≪ 1 and dividing (47) by (4�	
�) /�,  as 
 R∗ = V($%�!")1/D,    )*∗ = ��($%�!")1/D,    M∗ = `ËX($%�!")1/D,    )∗ = �($%�!)1/D

ËXD ,    

�∗ = (γ9 )Jλ($%�!")1/D
:ËXD , <∗ = Ì($%�!")1/D

ËXD ,    Ω∗ = Ω($%�!")1/D,    m∗ = f($%�!")1/D
ËX ,     

ℒ!∗ = (89 ) ℒ ËXD($%�!")1/D,   ℒ;∗ = (89 ) ;ℒb!($%�!")1/D,   Ωr∗ = M∗�)∗,    ]∗ =  8  (ℒ;∗ + �∗M∗�) − ℒ!∗ ,     

a∗ = (ℒ;∗ + �∗M∗�),   Ω|∗� = M∗�]∗ − a∗,      Ω�∗� = M∗� − 1,    Ωw∗ = M∗�<∗ 

 
Numerical calculations were performed to determine the roots of R from dispersion relation 
(47), as a function of wave number k for several values of different parameters involved, 
taking γ = 5/3. The variations in the growth rate R∗, with wave number M∗ are shown in Figs 
1-7. 



 
 
 
 
 
 

 
 

 
 

Fig. 1. The growth rate is plotted against the non-dimensional wave number k* with 
variation in the normalized magnetic field Í∗ = 0.0, 0.5, 1.0, 1.5 the value Î∗ = Ï∗ = ÏÐ∗ =Ñ∗ = 4∗ = Ò  and the value of ÓÔ∗  = 0.0 and ÓÕ∗  = 0.5 
 
Fig. 1 shows the variation in growth rate with respect to magnetic field. Here we notice that 
when the system is unmegnetized the growth of instability is maximum while the growth rate 
decreases with the increasing value of magnetic field. Thus from the graph we conclude that 
the effect of magnetic field is to stabilize the system.  
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Fig. 2. The growth rate is plotted against the non-dimensional wave number k * with 
variation in the normalized rotational effect Ω∗ = 0.0, 1.0, 2.0, 3.0 the value Î∗ = Ï∗ =ÏÐ∗ = Ñ∗ = Í∗ = Ò and the value of ÓÔ∗  = 0.0 and ÓÕ∗  = 0.5. 

 

 
 

Fig. 3. The growth rate is plotted against the non-dimensional wave number k* with 
variation in the normalized resistivity effects  Ñ∗ = 0.0, 1.0, 2.0, 3.0 the value Î∗ = Ï∗ =ÏÐ∗ = Í∗ = 4∗ = Ò and the value of ÓÔ∗  = 0.5 and ÓÕ∗  = 0.0 

 
Fig. 2 depicts the growth rate of instability in a rotating system against wave vector with 
variation in rotation. In Fig. 2, the growth rate of instability is maximum for non rotating 
system and showing decreasing growth rate with increase in value of rotation. It means that 
rotations decreases the growth rate of instability and try to maintain the stability of the 
system. 
 
Fig. 3, represent the growth rate v/s wave number with varying values of electrical resistivity. 
Here on observing the behavior of fig 3 we can say that electrical resistivity increases the 
growth rate of instability and destabilize the system equilibrium.  
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Fig. 4. The growth rate is plotted against the non-dimensional wave number k* with 
variation in the normalized thermal conductivity effects Î∗ = 0.0, 1.0, 3.0, 5.0 the value Í∗ = Ï∗ = ÏÐ∗ = Ñ∗ = 4∗ = Ò  and the value of ÓÔ∗  = 0.0 and ÓÕ∗  = 0.5. 

 
Fig. 4 shows the effect of thermal conductivity on the growth rate of instability. Here we see 
that the increasing value of thermal conductivity increases the growth rate of instability. 
Thus, the thermal conductivity shows a destabilizing effect, reciprocal to the effect of 
magnetic field and rotation on the growth rate of instability and destabilizes the system. 
 
Fig. 5 is plotted between growth rate and wave number with varying values of collision 
frequency. From Fig. 5, we can analyze that increasing values of collision frequency 
decreases the growth rate of the system. In other words we can say that the presence of 
neutral particles in ionized plasma is to stabilize the equilibrium of system. 
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Fig. 5. The growth rate is plotted against the non-dimensional wave number k* with 
variation in the normalized neutral particle effects ÏÐ∗ = 0.1, 0.2, 0.3, 0.4 the value Í∗ = Ï∗ = Î∗ = Ñ∗ = 4∗ = Ò and the value of ÓÔ∗  = 0.5 and ÓÕ∗  = 0.0. 

 

 
 

Fig. 6. The growth rate is plotted against the non-dimensional wave number k* with 
variation in the normalized temperature dependent hit loss function effects the value ÓÔ∗ = 0.5, 1.0, 1.5, 2.0 the value Í∗ = ÏÐ∗ = Ï∗ = Î∗ = Ñ∗ = 4∗ = Ò and the value of ÓÕ∗  = 0.0. 

Fig. 6 shows the variation in growth rate with respect to wave number under effect of density 
dependent heat-loss function. From Fig. (6) we found that the increasing values of 
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temperature dependent heat-loss function increases the growth rate of instability of 
considered system. It means that the temperature dependent heat-loss function has a 
stabilizing effect on the system. 
 

 
 

Fig. 7. The growth rate is plotted against the non-dimensional wave number k* with 
variation in the normalized temperature dependent hit loss function effects the value ÓÕ∗ = 0.5, 1.0, 1.5, 2.0 the value Í∗ = ÏÐ∗ = Ï∗ = Î∗ = Ñ∗ = 4∗ = Ò and the value of ÓÔ∗ = ×. ×. 

 
Fig. 7 is plotted, to show the effect of density dependent heat-loss function, between growth 
rate and wave number. From figure (7) we analyze that the density dependent heat-loss 
function plays a same role as thermal conductivity and electrical resistivity play to destabilize 
the system. It means that the increasing values of density dependent heat-loss function 
increases the growth rate of instability. 
 
3.8 Non-Gravitating Hydromagnetic Fluid  
  
In the transverse mode of propagation, dispersion relation (45), for non-gravitating 
hydromagnetic fluid; i.e. (4�	
� = 0) has two independent factors. First factor is identical to 
(20) and shows a viscous damped mode while the last factor (47) is the seventh degree 
polynomial equation from which the constant term of last coefficients gives the condition of 
instability as  ] = .ℒ;�� − ℒ!
� + _`D;"!" 2 < 0.  (53) 

 
This condition of instability is similar to the condition of thermal instability obtained by Field 
[15] and also to the conditions of instability (37) in longitudinal mode of propagation for non-
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gravitating hydromagnetic fluid. Now for perfectly conducting and in viscid fluid this condition 
of instability will be modify as 
 M� .ℒ;�� − ℒ!
� + _`D;"!" 2 + µ`DfD

� + 4Ω�Ø 5 .ℒb;"!":" + _`D;":" 2 < 0. (54) 

 
From the above condition of instability we can say that magnetic field and rotation modifies 
the condition of instability in transverse mode of propagation for infinitely electrical 
conducting and in viscid fluid when axis of rotation is along the magnetic field.  It means that 
in our case we find the modified condition of thermal instability due to presence of rotation 
and magnetic field.  
 
3.9 Axis of Rotation Perpendicular To The Magnetic Field 
 
We now analyze the wave propagation in transverse direction of external magnetic field 
considering the rotation of the magnetic field, we put ΩN = Ω and ΩP = 0, the dispersion 
relation (44) reduces to 
 −e+e� + 4Ω�- �Re + R fD`D

Z + Ω;� � =  0.      (55) 

 
Equation (55) has three independent factors, each representing a different mode of 
propagation. The first of these, identical with equation (20) and represents a viscous type of 
damped stable mode modified by the effects of viscosity collision frequency. The second 
factor of equation (55) equating to zero, gives 
 R$ + Ro2� + R�~2)¸Ωr + �� + 4Ω�� + Rν¸~2�Ωr + 8Ω�� + )*�+Ωr� + 4Ω�- = 0. (56) 

 
This dispersion relation shows a rotating mode with the effect of collision frequency, viscosity 
and permeability of the porous plasma medium, which is independent of thermal 
conductivity, finite electrical conductivity, finite electron inertia, Hall current, and radiative 
heat-loss function. Equation (56) is a forth degree polynomial having all the coefficients 
positive and a positive absolute term. So the equation will have all the four roots either 
negative or complex conjugates with negative real; i.e., it will represent a stable mode. In the 
absence of neutral particles and viscosity we get  
 R� + 4Ω� = 0.      (57) 

 
This represents a purely rotational mode which is oscillatory and stable in nature. Hence it is 
obvious that rotation in this direction of propagation does not alter the condition of instability 
but gives a separate stable mode. The presence of neutral particles, permeability and 
viscosity simply modifies this mode. The third factor of equation (55) equating to zero gives.  
 R� + ]  R$ + Ro]� + R�]o + R]$  +  ]� = 0.             (58) 

 
 where, 
 

 ]  =  �Ω±� + � +  a�.  



 
 
 
 
 
 

 
 

 

]� =  �Ω±� (� + a) + �a + Ωr)* + fD`D
� + Ω¿D� �.  

 

]o =  �Ω±� xΩ¿D� + �a{ + Ωr)¸ .a + Ω±� 2 + `DrD
� (a + )¸) + ΩzD� + �½Ω¿D

ε
�.  

 

]$ =  �Ω±� xΩr)*a + Ω�Ω¿D� + Ω|�{ + ¾D`DYν½� + �½ΩzD
ε

�.  
 

]� =  x�½Ω±ΩzD�� {.  

 
Equation (58) represents the dispersion relation for transverse wave propagating through an 
infinite homogeneous, self-gravitating, viscous magnetized partially ionized plasma having 
finite electrical resistivity, rotation, radiative effects, with the effect of neutral particles. it can 
be seen that when Ω|� < 0, The constant  term ]� of the dispersion relation (58)  will be 
negative. This implies that at least one root of (55) is positive, hence the system is unstable. 
So the condition of instability for such case in transverse mode of propagation is given as 
 

  Ω|� = M�] − 4�	
�a < 0.                  (59) 
 

Which is the same condition of instability discussed in (33) and obtained by Bora and Talwar 
[16] for finitely electrical conducting, self-gravitating plasma in transverse mode of 
propagation. Now in the absence of collision frequency between two components of plasma, 
kinematic viscosity, permeability and electrical resistivity i.e. < = 0,ν = 0, ν*= 0, and K1 = 0 
the dispersion relation (58) reduces to as 
 

Ro + aR� + R xfD`D
� + Ω¿D� { + YfD`D

� + ΩzD� = 0.     (60) 

 
Equation (60) represents a dispersion relation for infinite homogeneous, self-gravitating, 
thermally conducting plasma with radiative heat-loss effects. The condition of instability for 
such case is obtained from the constant term of equation (60), is given as 
 .YfD`D�� + M�] − 4�	
�a2 < 0.   (61) 

 
This is modified condition of radiative instability due to the effect of magnetic field, electron 
inertia, porosity of the medium, thermal conductivity and radiative heat-loss function in 
transverse mode of propagation. The condition is identical with condition obtained by Patidar 
et al. [25] and also by Aggrawal and Talwar [27]. From these conditions it is clear that if the 
fluid expressed by equation (61) does not contain radiative heat-loss function then the critical 
Jeans wave number below which the system is unstable is obtained from the constant terms 
of equation (61) and is given as  

M��� =  8`yD
­x U8Ù�D

Ú�D{ .                                (62) 



 
 
 
 
 
 

 
 

 
If the arbitrary radiative heat-loss functions are included in a thermally non conducting 
medium, the corresponding value of critical wave number is given by 
 

M��� =  \M�� ¤ ;ℒb
;ℒb( U8Ù�D

Ú�D)9ℒ !§ /�
.                     (63) 

 
The disturbances with a wave number M < M�� are unstable, where for M > M��, the 
disturbances are stable. If the fluid expressed by equation (60) is assumed to be 
unmagnetized i.e. H = 0 then the dispersion relation becomes for such case as 
 

. Ro + aR� + R Ω¿D� + ΩzD� = 0.       (64) 
 

This is the dispersion relation for infinite homogeneous non-magnetized, self-gravitating, 
thermally conducting plasma having electron inertia, porosity and radiative effect. Condition 
of instability for this case is given as 
 

Ω|� = M�] − 4�	
�a < 0.    (65) 
 

This condition is identical to (48). On comparing equation (61) and (65) we find that 
contribution of electron inertia and porosity in the condition of instability is effective only 
when the considered fluid is magnetized. The effect of magnetic field comes through the 
term V�M�a of magnetic field, there is an upward shift in the instability threshold i.e. the 
magnetic field decreases the value of critical wave number. Thus, we conclude that the 
magnetic field stabilizes the medium for transverse propagation. 
 
3.10 Non-Gravitating Hydromagnetic Fluid 

 
For this condition, first two modes of propagation is similar the two modes (20) and (56) of 
the dispersion relation (55) for transverse propagation, when axis of rotation is perpendicular 
to a magnetic field but the third factor, for perfectly electrical conducting medium, can be 
written as  
 R$ + Ro@� +  aC + R� ��a + Ωr)* + fD`D

� + WXD`D
� � + R �Ωr)¸a + `DrD

� (a + )¸) +M2]5+)c�t2M2ε+)cV2M2av+M2]ε  =0.                                        
(66) 

 
Equation (66) represents the combined influence of thermal conductivity, radiative heat-loss 
function, and magnetic field on the instability of two components partially-ionized plasmas 
with the effect of viscosity and permeability of the porous medium. The condition of instability 
is obtained from dispersion relation (66) as  
 am�5 + v] < 0.      (67) 

 



 
 
 
 
 
 

 
 

This is modified condition of thermal instability due to magnetic field, finite electron inertia, 
and porosity of the medium. From equation (27) the expression for critical wave number will 
be given as 
 M���   =   �µ!Dℒ _; − !ℒb_ .1 + �rD

�*D2Ø .1 + �rD
�*D2Ü �.                          (68) 

 
The medium is unstable for wave number M < M��. It may be noted here that the critical wave 
number involves, derivative of temperature dependent and density dependent arbitrary 
radiative heat-loss function, thermal conductivity of the medium and the magnetic field. 

 
4. CONCLUSIONS 
 
The magneto-thermal instability of a rotating self-gravitating partially ionized Hall plasma 
permeated by a magnetic field has been investigated in the presence of the effects of 
electrical resistivity, finite electron inertia, porosity, permeability and viscosity of the medium. 
The general dispersion relation is obtained using normal mode analysis. This general 
dispersion relation is discussed for longitudinal and transverse modes of propagation for 
each cases when axis of rotation taking along and perpendicular to the magnetic field. In 
general, we find that the Jeans condition remains valid but the expression of the critical 
Jeans wave number is modified due to presence of thermal conductivity and radiative heat-
loss function. Numerical calculations have been performed, in transverse mode of 
propagation, to obtain the dependence of the growth rate of the gravitational unstable mode 
on the various physical effects. We found that 
 

(1) Viscosity, permeability of porous medium and collision frequency of the two 
component partially ionized plasma have stabilizing effects in both longitudinal and 
transverse mode of propagation. Also it is found that the direction of axis of rotation, 
do not affect the stabilizing effects of these parameter. 

(2) Angular frequency of rotation has stabilizing effects in transverse mode of 
propagation when axis of rotation is along the magnetic field and fluid is in-viscid.  

(3) The electrical resistivity has a destabilizing effect. Also in the transverse mode of 
propagation electrical resistivity eliminate the effect of magnetic field from the 
condition of radiative instability and increase the value of critical wave number.  

(4) The magnetic field modifies the radiative instability criterion in the transverse mode 
of propagation.  

(5) The Hall current parameter does not affect the condition of instability but has a 
destabilizing effect in longitudinal mode of propagation. 

(6) Finite electron inertia modifies the growth rate of the instability in longitudinal as well 
as transverse mode of propagation. Also finite electron inertia, in transverse mode of 
propagation, modifies the condition of radiative instability when external magnetic 
field is present. 

(7) Porosity of the medium stabilizes the system by reducing the critical wave number in 
a rotating or a magnetized or a rotating magnetized medium. 

 
From the nature of the growth rate of instability presented in Figs. 1-7 with variation in 
various parameters we can conclude that the thermal conductivity, electrical resistivity and 
density-dependent heat-loss function have destabilizing influence on the instability of the 
fluid. It is also observed that the contribution of rotation, magnetic field, viscosity and 
collision frequency it to reduce the growth rate and stabilize the system. 
 



 
 
 
 
 
 

 
 

COMPETING INTERESTS 
 
Authors have declared that no competing interests exist. 
 
REFERENCES 
 
1. Jeans JH. Phil. Trans. Ray. Soc. London A, 1902;199:1. 
2. Chandrashekhar S. Hydrodynamics and Hydromagnetic Stability. Clarendon Press, 

Oxford; 1961. 
3. Chhajlani RK. Vaghela DS. Astrophys. Space Sci. 1987;139:337. 
4. Chhajlani RK.  Purohit P. Beiter Plasma Phys. 1984;24:195. 
5. Khan A. Bhatia P.K. Physica Scirpta. 1993;47:230.  
6. Radwan AE. Appl. Mathematics Comp. 2004;148:331. 
7. Kumar V. Kumar N. Srivastava KM. Mittal R. Astrophys. Space Sci. 1993;199:323. 
8. Mamun AA. Shukla PK. Physica Scripta. 2000;62(5):429. 
9. Jacobs G. Shukla PK. J. Plasma Phys. 2005;71:487. 
10. Borah AC. Sen AK. J. Plasma Phys. 2007;73:831. 
11. Ali A. Bhatia PK. Asrtophys. Space Sci. 1993;201:15. 
12. Prajapati RP. Soni GD. Chhajlani RK. Phys. Plasma, 2008;15:062108. 
13. Shaikh S. Khan A. Bhatia.PK. Z. Naturforsch, 2006;61(a):275. 
14. Shaikh S. Khan A. Bhatia.PK. Astrophys. Space Sci. 2007;312:35. 
15. Field GB. Astrophys. J. 1965;142:531. 
16. Bora MP. Talwar SP. Phys. Fluids. 1993;B5(3):950. 
17. Talwar SP. Bora MP. J. Plasma Phys. 1995;54(2):157. 
18. Tsintsadze NL. Chaudhary R. Shah HA. Murtaza G. J. Plasma Phys. 2008;74:847. 

doi:10.1017/S0022377808007046. 
19. Gomez-Pelaez AJ. Moreno-Insertis F. Astrophys. J. 2002;569:766. 
20. Bora MP. Baruah MB. Phys. Plasmas. 2008;15:063702. 
21. Prajapati RP. Pensia RK. Kaothekar S. Chhajlani RK. Astrophys. Space Sci. 

2010;327:139. 
22. Kaothekar S. Chhajlani RK. Journal of Physics: Conference Series. 2010;208:012044. 
23. Dangarh BK. Pensia RK. Shrivastava V. Prajapat V. Adv. Studies Theor. Phys. 

2011;5(16): 755. 
24. Kaothekar S. Chhajlani RK. Journal of Physics: conference series 2012;365:012053. 
25. Patidar AK. Pensia RK. Shrivastava. V. Can. J. Phys. 2012;90:1209-1221. 

doi:10.1139/p2012-098 
26. Ibanez SHM. Astrophys. J. 1985;290:33. 
27. Aggarwal M. Talwar SP. Mon. Not. Roy. Astro. Soc. 1969;146:235. 
 
 
 
 
 
 
 
 

Appendix  A 
Non-dimensional form of (47) 

 Ý∗Þ + Ý∗ß(4à∗ + á4â∗ + ãÏÐ∗ + ä∗) + Ý∗å~4à∗ (á4â∗ + ãÏÐ∗ + ä∗) + áÏÐ∗(æ4â∗ + áÏÐ∗ +  áä∗) +Í∗á�∗á + 4ç∗á + ã4∗á + áä∗4â∗ + 4â∗á� + Ý∗ã~4à∗ +4ç∗á + áä∗4â∗ + ãä∗ÏÐ∗ + ã4∗á + ãÏÐ∗á + 4â∗á +



 
 
 
 
 
 

 
 

ã4â∗ÏÐ∗- + á4â∗ÏÐ∗(4à∗ + 4â∗ + áÏÐ∗ + ä∗) +  Í∗á�∗á(4â∗ + æÏÐ∗ + ä∗) + ÏÐ∗+æ4ç∗á + ãä∗4â∗ +ãä∗ÏÐ∗ + è4∗á- + 4é∗á + ã4∗á + 4â∗+4ç∗á + 4â∗ä∗-� + Ý∗æ~4à∗ +4é∗á + ãÏÐ∗áä∗ + 4â∗ä∗ + ãä∗ÏÐ∗4â∗ +áÏÐ∗4ç∗á + 4â∗4ç∗á + ÏÐ∗4ç∗á + ã4∗áä∗- + ê∗á�∗á(ä∗4â∗ +  æä∗ÏÐ∗ + áÏÐ∗á + 4â∗ÏÐ∗) + 4â∗ÏÐ∗+ÏÐ∗4â∗ +áä∗4â∗ + ãÏÐ∗4à∗ + ãä∗ÏÐ∗ + á4à∗ 4â∗ + áä∗4à∗ + áä∗4à∗ + �∗áê∗á + 4ç∗á- + ÏÐ∗+áÏÐ∗4ç∗á +4â∗4ç∗á + 4é∗á + ã4∗áÏÐ∗ + è4∗áä∗ +  è4∗á4à∗ - + áÏÐ∗4é∗á + 4â∗4é∗á� + Ý∗á~4à∗ +áÏÐ∗á4ç∗á +4â∗ÏÐ∗4ç∗á + æÏÐ∗4é∗á + 4â∗4é∗á- + 4â∗ÏÐ∗+ÏÐ∗4à∗ 4â∗ + 4â∗ÏÐ∗ä∗ + ãÏÐ∗ä∗4à∗ + á4â∗ä∗4à∗ + ä∗Í∗á�∗á +ÏÐ∗Í∗á�∗á + 4é∗á + 4à∗ 4ç∗á- + ÏÐ∗+4â∗ÏÐ∗4ç∗á + áÏÐ∗ä∗Í∗á�∗á + 4â∗ä∗Í∗á�∗á + áÏÐ∗4é∗á + 4â∗4é∗á +ã4∗áÏÐ∗4à∗ + ã4∗áä∗ÏÐ∗ +  è4∗áä∗4à∗ -� + Ý∗~ëì∗ ÏÐ∗ëà∗ +ëà∗ ä∗ëì∗ ÏÐ∗ + ÏÐ∗Í∗á�∗áä∗ + ëà∗ ëé∗á +ÏÐ∗ëé∗á + ëà∗ ÏÐ∗ëç∗á + ãëà∗ ë∗áä∗ÏÐ∗- + áÏÐ∗áëé∗áëà∗ + ëì∗ ÏÐ∗ëà∗ ëé∗á� + +ÏÐ∗áëì∗ ëà∗ ëé∗á-....    
 

Appendix B 
 v = .4 í±� + 2�2.  

v� = µí±� .6 í±� + 8�2 + �}D`�
�D + 2Ωr)* + �� + �fD`D

� + 4Ω�Ø.  

vo = µí±� .12ð í±� + 4 í±D�D + 4 }D`�
�D + 4�� + 6 fD`D

� + 16Ω� + 8Ωr)*2 + )* .2Ωr� + 8Ω� +2m2M2v+4�h2M4v2+2�m2M2v.  

v$ = µí±� .8� í±D�D + í±«�« + 2 í±}D`�
�« + 8� }D`�

�D + 6 í±� �� + 6Ωw fD`D
� + 6� fD`D

� + 24 í±� Ω�2 +Ω�v)q12Ω�vΩv+8Ωv�+32Ω2+6m2M2v+)q2�m2M2v+4h2M4v2Ωv+Ωv2)q+2Ωvm2M2v+4)qΩ2+h2M4v2h2M4v2+2�2+2m2M2v+8Ω2+m4M4v2+4Ωm2M4hv2.  

v� = µí±� .2� í±«�« + 4�Ωw }D`�
�« + 4�� }D`�

�D + 4 í±D�D �� + 7� í±fD`D
�D + 2 í±D fD`D

�« + 2 fD`D}D`�
�« +2m4M4v2+16Ω�2v2Ω2+16Ω2h2M4v2+8Ωhm2M4v2+Ω�v)q8Ω�2v2Ωv+6m2M2Ω�v2+8Ωvh2M4v2+12�ΩmvΩv+4Ωv2)q+6�m2M2v+6Ωvm2M2v+16)qΩ2+48Ω�vΩ2+)q4·h2M4v2Ωv+2m2M2vΩv)q+2m2M2h2M4v3+2m4M4v2+16h2M4v2Ω2+8Ωhm2M4v2+2�h2M4v2h2M4v2+m2M2v.  

v� = µí±��� .�í�í±«�« + $í�}D`�í±�« + �}D`�fD`D
�« + �ôí���í±� + �ªí±fD`D

�D + 8· }D`�
�D Ωr +   �í±í�D��� +6m2M2)qΩvv+2Ω�2m2M2v3+5ΩvΩ�m2M2v2+4m4M4v2+32Ω�2Ω2v2+24Ω�)qΩ2v+32h2M4v2Ω2+16Ωhm2M4v2+Ω�v�Ω�3v3+2�2h2M4Ω�v3+2�Ω�2m2M2v3+2�h2M4m2M2v3+2Ω�m4M4v3+4Ω�2Ω2v2+8Ω2h2M4Ω�v3+4hm2M4Ω�Ωv3+)q2h2M4v2Ωv2)q+2Ωvh2M4m2M2v3+2�h2M4m2M2v3+m4M4)qv2+2Ωvh4M8v4+8Ω2h2M4v2)q+4Ωhm2M4)qv2+h2M4v2�2h2M4v2+m4M4v2+4Ωhm2M4v2+4Ω2h2M4v2.  

v� = µí±��� .�ªí�í±«�« + $ªí�}D`�í±�« + �ªí±D fD`D
�« + �ª}D`�fD`D

�« + $í±D í�D���D + �fD`Dí±��í��D +4h2M4v2Ωv2)q+2Ω�2Ωvm2M2v3+2m2M2h2M4Ωvv3+3Ω�m4M4v3+2m4M4)qv2+16Ω�2Ω2)qv2+16h2M4v2Ω2)q+8Ω�3Ω2v3+16h2M4Ω2Ω�v3+8)qΩv2hm2M4v+8ΩΩ�hm2M4v3+)q2�h4M8v4Ωv+2Ωv)qh2M4m2M2v3+8Ω2h4M8v4+2h2M8m4v4+8Ωhm2M4h2H4v4.  

öè = µ4àÏÐö .ÏÐ4âá4àæöæ + á÷á�ã4à4âáÏÐöæ + 4àá Íá�áÏÐ4âöæ + áÏÐ4â÷á�ãÍá�á
öæ + 4àá ÏÐ4âÍá�á

öæ + Íã�ã4àÏÐöæ +ãããã4444ààààææææ4444ááááÏÏÏÏÐÐÐÐööööææææ++++ãããã4444÷÷÷÷����ããããÍÍÍÍáááá4444ààààÏÏÏÏÐÐÐÐööööææææ++++èèèè4444àààà÷÷÷÷áááá����ãããã4444ááááÏÏÏÏÐÐÐÐööööææææ++++ÏÏÏÏÐÐÐÐÏÏÏÏÐÐÐÐ4444ââââáááá÷÷÷÷ãããã����èèèèööööãããã++++ãããã4444áááá÷÷÷÷ãããã����èèèèööööããããÏÏÏÏÐÐÐÐ++++ãããã4444÷÷÷÷ÍÍÍÍáááá����áááá÷÷÷÷ááááøøøøããããÏÏÏÏÐÐÐÐööööãããã++++÷÷÷÷áááá����èèèèÍÍÍÍããããÏÏÏÏÐÐÐÐööööææææ.  



 
 
 
 
 
 

 
 

  


