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DYNAMIC BUCKLING LOAD OF AN IMPERFECT VISCOUSLY DAM PED
SPHERICAL CAP STRESSED BY A STEP LOAD

ABSTRACT

This paper determines the dynamic buckling load of a lightly and viscously damped
imperfect spherical cap with a step load. The spherical cap is discretized into a pre-buckling
symmetric mode and a buckling mode that consists of axisymmetric and non-axisymmetric
buckling modes. The imperfection is taken at the shape of the buckling mode. The inherent
problem contains a small parameter which necessitated the adoption of regular perturbation
procedures, using asymptotic technique. The general result is designed to display the
contributions of each of the terms in the governing differential equations. We deduce the

results for the respective special cases where the axisymmetric imperfection parameter,

namely &,, and the non-axisymmetric imperfection parameter &,, are zeros. We also

determine the effects of each of the non-linear terms as well as the effects of the coupling

term.

Keywords: Spherical cap, step load, dynamic buckling, imperfection parameter.
1. INTRODUCTION.

The subject of dynamic buckling of elastic structures has been a thriving area of
investigation ever since [1-3] developed the discipline of dynamic stability of elastic
structures from the original static consideration that was prevalent before this time. Over the
years, many investigations on dynamic stability of elastic structures have been added to the
original sketchy and scattered pieces that saw the genesis of dynamic buckling of elastic
structures as a research interest. Among the many scholarly investigations that have come
to light include [4], [5], [6], [7] and [8], who investigated the dynamic buckling, of two-degree
— of freedom systems with mode interaction under step loading. Mention must also be made
of relatively recent investigations which include [9], who investigated the dynamic buckling of
thin cylindrical shells under axial impact, [10-11], who studied the nonlinear dynamic

buckling of stiffened plates under in-plane impact load.

But by far, the investigation that concerns us in this study is that by [12], who investigated

the dynamic buckling loads of imperfection-sensitive structures from perturbation
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procedures. His analysis was predicated primarily on the studies earlier enunciated by [1-3].

Other Pertinent investigations include those by [13], [14] and [15, 16], among others.

However, a cursory appraisal of all the investigations to date reveals that the phenomenon of
damping has been given very little or no attention at all in the dynamic buckling process. We
are of the strong opinion that since dynamic buckling process is a time dependent process,
the effect of damping, no matter how slight, should not be overlooked. In this investigation,
the presence of a small viscous damping is therefore assumed and given some level of
prominence. Of course, the result obtained is far more representative of the actual physical
life situation. To this end, we remark that a few of the many existing investigations that have

tended to incorporate damping include the studies by [17-20], among others.

The layout of this investigation is as follows:

We shall first write down the mathematical equations satisfied by the structure investigated.

We shall next develop asymptotic techniques, using perturbation procedures to solve the
governing equations analytically. We note that dynamic bucking problems are always non
linear and therefore, closed-form exact solutions are not always possible. Therefore, regular
perturbation method provides a suitable alternative to the solution of such problems,
particularly when the problems contain small parameters in which asymptotic series

expansion can always be invoked.

We shall lastly make pertinent deductions.
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There are five sections in this paper. Section two examines the dynamic buckling load of an
imperfect viscously damped spherical cap stressed by a step load. Section three introduces
the viscous damping to Danielson’s results. Section four considers the analysis of results

while section five ends this work with a conclusion.

2. THE DYNAMIC BUCKLING LOAD.

Danielson, had, for simplicity, assumed that the normal displacement w(x,y,T) of the

spherical cap was given as
W(x, y,T) = &(T Mp(x y) + & (T M (x, y) + & (T W (x. ) &)

where VVO(X, y) is the pre-buckling mode and V\(L(X, y),Wz(x, y) are the axisymmetric and

non-axisymmetiic modes respectively. fo(T),fl(T) and EZ(T) are the respective time

dependent amplitudes of the associated modes. Imperfection W was introduced as
W=4W +SHW, )

where W, W\, still have meanings as before and 4‘1,4‘2 are the imperfect amplitudes

assumed to be small relative to unity. On assuming suitable forms for W, W,, W, and

substituting same into the compatibility and dynamic equilibrium equations and simplifying,

using his assumptions, Danielson obtained the following coupled differential equations for

step loading
%%% = (T) @
el g) ke e =8 @
L0 e a-g) s = 6, (5)

§(0)=¢(0)=0i=12
Here, f (T) is the loading history which in our investigation, (as in Danielson’s case), is the

step load characterized by
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f(r)={7s ©)
and, A ,is the load parameter, considered to be non-dimensionalized and satisfies the
inequality0< A <1.

In our guest for solution, we are to determine a particular value of A, called the dynamic
buckling load represented by /1D and which satisfies the inequality O</1D <1 We define

the dynamic buckling load Ap as the largest load parameter such that the solution to the

damped version of problems (3)-(6) remains bounded for all time T>0. As in (3)-(5), we note

that a;i = 0,1, 2are the circular frequencies of the associated modes ¢, ¢, and &,

respectively while k, and k, are constants considered positive

3. THE USE OF VISCOUS DAMPING IN DANIELSON'S RESULT S.

The present study is an extension of Danielson’s problem to the case where a small viscous
damping is present. We however avoid Danielson’s method (who used Mathieu — type of
instability), for, as noted by [3, page 100], Mathieu — type of instability is always associated
with many cycles of oscillations as opposed to just one shot of oscillation that triggers off
dynamic buckling.

For simplicity of analysis, we assume the existence of damping on the buckling modes.

dé,

Since this damping must be only proportional to the velocity, we add the terms Cld_T and

d
Czﬁ to (4) and (5) respectively and the formulation now becomes

dT
1 9%,

2 ar +&,=f(T) )
1d f dfl 2 2_ ¢

ety rallm bk Tk =64 ®

e S 1-8)+ 65264 ©

3 are
where C,i =12 are the damping constants and which satisfy the inequality 0< ¢ <1.

Using f (T) =1 and substituting (6) into (7) we have
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1d%,,

of dT? téo =4

1 dzfl d§(1 2 2_ ¢
e )k g =4
1 dzfz dfz z

ag de C 9(2(1 5o)+<(1<(2 240
Now using,

t=a,l,

so that

o) _, 90 () _ o)

dT d dT dt

Then (10)—(12) become

d fo vE =

0’8 [caet s [al p oy (@l w.[al, »_ [a];
T }—{ﬂ a0-4) M klfl{%} szz{%} &
o’ [ aé}dé{ ]52(1 50){ Fé{ﬁ} iE

W) )

dt? wg dt

Next, we let

2a.6 = % 20,€ = G

2
’Q:ﬂ,R:ﬁ’S:{ﬂ}
2 W 2

where,
2
£=2Q* = A{ﬂ} :
w,
and

0<a,<] 0<a,<] 0<Q<] O<R<landO<e<1
Substituting (16) into (14) and (15) yield
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d% .

dzé;
dt?

! 2”15% +QEL-§)-kQE +kQE =084,

d? d :
2 R £ REE SR,

§0)=¢(0)=0i=12

Asin [1— 3] , we neglect the pre-buckling inertia term, so that from (18) we get

&=
On simplification, using (21), equations (19) and (20) yield
d? d

S e Qg e -k QE e QE e
and

8 s 2, 9 s i, - s, + ROEE, = 56,

dt? dt
&0)=¢&(0)=0i=12
where,

{3

We assume a small time scale T such that,

T=4
and
& =&, +&,

fi// = {i,tt + 2‘E‘{i,tr +£2 i,rr;i = 1'2

We denote our perturbation parameter by £ so that

&)= ic 1,7}

&)= 50"

i=1

(18)

(19)

(20)

(21)

(22)

(23)

(24a)

(24b)

(24c¢)

(25)

(26)

Substituting (25) and (26) into (22) and (23), using (24b) and (24c), equating terms of the

orders of & we get,
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+Qcl=¢

¢+ Q¢ = -2 + ¢ + Q7 — QoY - 2¢ W)
and

’7,(;) + R2’7(1) = SCEZ

0+ R =200 + 8 - 2] - et
¢"(00)=1"(00)=0,i =1,2
(00)=7(00)= 0 = 12
¢t"(00)+¢P(00)=77{"(00)+7(00)=0,i =12

The solution of (27) using (31) and (32) is

¢O(t,7) = a (r)cosQt +by(r)sinQt +§

& (o)
0)=-51:h(0)=0

a(0)=-580

Similarly, the solution of (28) is

n9(t,7) = a,(r)cosRt +b,(r)sinRt + %
<

(0)=->%2:b,(0)= 0

Substituting using (34a) and (35a) into (28), we have

g(zt)t +Q° (jz) = —2a1[—Q81$ith+Qb1coQt] +!31 coQt+ b15ith+%

—kZQZB[as +b5] + 3, sin2Rt+ 2 2] —b§]cos2Rt}
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_k2Q2

+ 2855, Eiz cosRt 20,56, Sf"z sinRt}
R R

HoQ| Sl +H]+absingQt+ et -Flcowt

rk, Qz% 2 32&1 COSQH%sith} +2QasinQt-b,cosqt] (36)

Now, to ensure a uniformly valid asymptotic solution in t, we equate to zero, in (36), the

coefficients of cos Qt and sinQ't to get

bl +ahb =ag (37a)
and
ajl_ taa = _b1¢ (37b)
where,

-d0)
(V="

_ 1 r

=2 [1+ 2% fl}

Simplification of (37a, b) yield

bl + | = —q{b{qﬁ +”ﬂ : “;bq

of +2at + 40 ¢+ |0

n(0)=0((0)=- 5> @

And
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2
o +2ael 140 9+ |0

¢
a(0)=- & ial0)= %8 @7

The remaining part of the equation in the substitution into (28) as obtained from (36) is

2+ Q%" = g, + k Q[ py(r)sin2Qt + py(r)cos2q]

~ k,Q[p,(r)sin2Rt + p,(r)cos2Rt + p,(r)cosRt + p,(r)sinRt] (38a)
¢?(00)=0;¢?(00)+¢\?(00)=0 (38b)
where,
—_ E]_ 2 2 . —_ . —_ 1 2 2
% =g tkQ ro(7) = k,QPr(7); po(7) = aby; py(r) = E[ai -] (38¢)
p,(r) = ahy; py(r) = —[az 02} p.(r a;f‘(z  ps(7) = % (38d)
r)= E[ai NSAGE E[af +1f (380)
& .S
P(0)= 0, (0) = 20" P,(0)=0;p,(0) = 2 (381)
288, &S
4(0) - R4 p5(0) - O' o (O) 2Q4 rl(o) - 2R4 ! (389)
The solution of (38a), using (38b) is
(,7) = a(r)cosQt +br)sinQt + 0 -2 p,{r)sin20t + p (r)eos20]
~ k,Q?[py(r)sin2Rt + py(r)cos2Rt + p,o(r)cosRt + py,(7)sinRt] (392)
a3(0) =&ilot kg zfll-'- K, ?2[%} I, b3(0) =~ O’quz (39b)

where
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1,111 1 2
20 672 4Q-4R| RIQ-4R)

0)=atipl)=abinl) = Pl = P o0

oy bslr)
Qz_Rz’ Q “R?’

(39¢)

1 pu(0)=0 (39¢)

2 2
S*& 2S E
0)=0;p,\0 , —[—]2 ; —[ﬂz 39f
pe( ) p7( ) 2Q4 p8 2R4 Q 4R2 plO R4 Q R2 ( )
Substituting using (34a) and (35a) into (30) we get
(s =-al-pasisucosi- ssimesicon
Wt =—2a|-Ra sirRt+RQ coRf| —2R—a, sirRt+b, co
+{azcoﬂ+bzsirRt+§§}

—Z[Z%i% +%cosm%sinm% coQH%Sith

~—| +[aa, ~bb]cosR-RIt+[ab, +ha,]sinR+ Rt (40)

+[aa, +bb]cosRP-Rt+[ha, —ab ]sinR-R]t

Now, to ensure a uniformly valid asymptotic solution in t, we equate the coefficients of cosRt
and sinRt to zero. This will ensure a finite at infinite time, i.e. as t tends to infinity, such terms
also tends to infinity thereby making the solution not to be bounded, hence non-uniform.

Such terms are called secular terms and our aim is to get rid of them.

b +ab, =8, (41a)
and
& +a,3, = ~b,® (41b)
where,
o=1]s R4
2R Q
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Simplification of (41a, b) yield
bg + azbé = —(D[Cbb2 + 0’26\2]

b} +arl = cb[dmz A azbzﬂ
b +2a,b) + bzlqbz + 0'22] =0

PS¢,
R? (41c)

b,(0) = 0:b;(0) = -
And
ag + azaé =" <D[CDa2 - azbz]
o + a5t =0 0o, + %o v
o + 20,8 +a,|0* +a|=0

S a,S
o 0=, =

The remaining part of the equation in the substitution into (30) as obtained from (40) is

a(0)=- (41d)

(2) +R? (2) = _&2 plz(r)coth + p13(T)Sith + p14(Z')COS{Q + R]t
TR TS 4 pule)sinfQ + R+ pilr)codQ - Rl + pi(0)sinlQ - R]
n?(00) = 0:7?(00)+7(0,0)=0 (42b)
where,

S2E SEE 2a.S¢& 2bS
_S'E SEE ()=285% b ()2 BSE L (oaa b (2o

R Q] R’ %

Pis(r) =B, +hia,; pio(r) =aa, +bb,; p,(r) = ha, -ah (42d)
p0)= 55, (0)=0,p,0) = S5, 0) -0 (29
Pis(0) = 566,  p;(0)=0 (42

Q*R*’
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The solution of (42a) using (42b) is

p.s(7) ot + p,(7)sinQt +
7?(t,7) =a,(r)cosRt +b,(z)sinRt + & — 1 D,(7)codQ + Rt + p,,(r)sifQ + Rt + | (43a
R 2 .
p.A7)codQ - Rlt + p.(r)si(Q- Rt

aZSéTZ
R3

a,(0)=S2&,1, +R*SE &, 1,:b,(0) = - (43b)

where,

S R S e S ! + . e
|4{[R2Q]2 2{[RQ]ZIR2—Q2] Q[RQF[2rR+Q] Q[RQ]Z[ZR—Q]H 0

N AR X () AR S < YA () IR < (9
|3 - R’ p18(r) - R? _Qz d plg(r) - R? _Q2 ' pzo( )_W (43d)
— p15(r) : S 1AL — pl7(T)
le(T) Q[ZR N Q]' pzz(r) Q[ZR— Q]’ pzs(r) Q[ZR— Q] (43¢)
25§,¢, S& &,

Ps(0) “ORR -] P15(0) = 0; p,(0) = OR2R Q| (431)

S&&,

= W[ﬂ]; pzs(o) =0 (439)

p21(0) =0; P, (O)

Next, using (34a), (39a) and (35a), (43a) we deduce the displacements as

&)=V, r)e +cD(t,r)e? + ... (44a)
and
&) =nY,r)e+n?(t,7)e? +... (44b)

We seek the maximum displacement for both El(t) and Ez(t). To achieve this, we shall first
determine the critical values of tand 7 for each of El(t) and Ez(t) at their maximum values.
The condition for the maximum displacements of El(t) and Ez(t) is obtain from (24b).hence

e €6, (45a)
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fZ,t + ‘962,7 1

We know from (44a, b) that
&t)=cPtr)e+cPltr)er +..

&(t)=nVtr)e+nPer)e” +...
On applying (45a, b) to (46a, b), we get

¢ +ec, =[Pt 7. )e + ¢Ot, 7. )2 + ..

+E [C,(:)(ta,fa)5+C,(f)(ta,ra)ez +.._J:o
And
n,+en, = [/7 £+/7(C,Cg+]

+& 0T, 1 )e+02(T, 1. )e* +..]=0

where, (t r ) and (TC,TC) are the values of t and 7 at the maximum displacement of

a’"a

C(t,T) and I7(t,T) respectively.

We now expand (47a, b) in a Taylor series about t, =0and T, =T,,7, =

thereafter equate to zero the terms of the same orders of & 1o get
¢P(t,0)=0

t,cW(t,.0) + t,c 1 (t, 0) + ¢?(t,,0) + ¢¥(t,,0) = 0

And

n(1,0)=0

T3 (T.0) + Tyf(T,.0)+7(T, 0) +79(T,.0) = 0

Substituting for C’(tl) from (34a) in (48a) and simplifying we get

sinQt, =0

A further simplification of (50a) gives
7

th=—
Q

A similar solution for (49a) is
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T ==
° R

Next, we deduce from (48b) that

L= T[toctr tO,O)+C( )(tO'O)"'C()(to’O)]

Simplification of the following terms are however necessary in this analysis,

€Oty 0) = & I+ & -k, £, 1,:¢0(t,0) = &,
Wty 0) = &15:cP(t,0) = & ¢¥(t, 0) = 28,1,

_ 2 2 S 2
C(Z) (tO 'O) = 251 Ill + kl <(TSI. |12 + k2 £2|:¥} |13; C,gl) (tO ’0) = O’

where

| | = Sn2Qt, | _ Q*Sn2RY,
5 Qz' 6 3Q2 7 R3|_Q2 —4R2]

S DT S SRre: B SR
13 21Q2—4R2J Rle2_4R2J Q2_4R2 Qz_Rz

On substituting (51, b-d) on (51a), we have

t = alIS + k1£1|6 - kzsfz I7 +t0|8 + |9
Similarly, deducing from (49b) yields

1
1= _m [T0,7 (tlr) (To 10) +n ,(t2) (To 'O) +1 ,(rl) (to 'O)]
We however note the following simplifications
,7(t2) (TO ’0) = 0!285_2 Il4+ 82 é:Z |15+ Sé_—l 22 |16;,7,(t17) (TO ’0) = Sf_Z I17

,7,(1:'L) (TO ’O) = SZ 52 |18;,7,(t:.) (TO ’O) _SEZ’ (TO ’O) 2852 |20
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N1, 0)= S &1, + RSE & in (T, 0)=0; (53d)

where

|, =- COZTTO l,c = —Rl, sinRT, (53¢)
2sinQT, cosQT,
- RZ oR[R-Q°] [rff2r+q]
l,, =-R°S,sInRT, - [Q+ R]S|n[Q+ R]TO [Q R]sm[Q R]TO (53f)
QRQ[[2R+Q]  QRQ[[2R-Q]
o, _ @, _1., _1. . _1
|17 = R ’|18 R2 ’lzo R2 ’|21 R ’|21 R (539)
| _{ - 1{ 2¢0sQT, codQ +RIT, codQ - RIT, ﬂ
1971 2[ o2 (53h)
2l RIR -] Qlrofr+ Q] QlRQf2R-Q]
On substituting (53, b-d) on (53a), we have
Tl = a2|14 + élll6 +T0|17 + |18 (54)

We, now, determine the maximum values of((t)and /7(t) say ¢, and /). respectively by

evaluating (46 a, b) at the critical values namely t =t ,7 =7, and T =T_,7 =7_.

¢, =W, 1. )e+cA(t,,r,)e +... (55a)
7. =T, r)e+n?(T,,1.)e? +... (55b)

Expanding (55 a) in Taylor series using,

b=t +e, +&t,+..1, =&, = glto +a +EN, + J (56a)

we have

¢, = £lc?(t, 0)+ ¢V (t, O)let, + £, +..|+ ¢Vt ety + 1.5 +..]]

+¢A(t, 0)e? +.. (56b)

Regrouping the terms in orders of & yields
¢, = ¢Vt 0)+ 2t c¥ t, 0) + t,cV t,.0) + ¢ (t, 0)] + .. (56¢)

On substituting the terms in (56¢) from (51, b-d), we have

_ _ _ 2 2 S 2
=26l 4 el P28 kBl Ils}e“--- 57
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Similarly, expanding (55 b) in Taylor series using,
T =Ty + €T, + €T, +...7, = €T, = &[T, + £T, + £7T, +..|
we have

1, = e (T,.0)+ 7O (T, O)eT, + £7T, +.. |+ nO(T, 0)e[T, + £T, +..]|

’7 (To ’O)
Regrouping the terms in orders of & yields
7, = e (1,.0)+ 2T (T, 0) + Ty (T, 0) +72(T, 0)| +

On substituting the terms in (58c) from (53, b-d), we have
1= 288108 4 TS &l +S £l RISEL L [ 5.

The net maximum displacement ¢, is

én = 6ot 0. =t 1) +n(T7)
Substituting for terms in (60) from (57) and (59) we get
& =Ce+Ce’+...

where

_ _ _2 _2 S 2 _
C, =14C, :9(1|23+8252|24+k1<(1|12+k2<(2[¥} |13+R2<(1<(25|19

22 = 281110+ 288, g1l = 205 +glg; 1, =15+ Tolyg

As noted by [1—3] and [2]] ,the condition for dynamic buckling is
A

L

dé,

Asin [23— 24], applying the method of reversal of series of (61a), we get
£=di&, +d, <o+

Substituting for sz from (61a) in (63) and equating powers of orders of £, we get

1 C
d=—,d=—-2
gt ¢

(58a)

(58D)

(58¢)

(59)

(60)

(61a)

(61b)

(61c)

(62)

(63)

(64)

The maximization in (62) is better done from (63), thus implementing (62) using (63) we

have
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352

353

354

355
356
357

358
359
360
361
362
363
364

365

366

&) =2 (65)

where, Em(/]D) is the value of the net displacement at buckling. In determining the dynamic

buckling load, we evaluate (63) at

A=A,
to yield
&= &, + ool (66)
On substituting for terms dland dzfrom (64) and Em(/lD) from (65) in (66) and simplify to get
C

A, =— 67

®4c, ©D
The expansion of (67) gives [using (61b, c)]

_ _ _2 2 2 -1
1l w, I, ; - <(1|23+82§(2|24"'k1§(1|12"'kzgz[iz} |5

AD :Z a |:2£1|10+2852|20j| R (68)

+R° $16,Sk,
Here, (68) gives the formula for evaluating the dynamic buckling load /1D , and is valid for

R# (120.201-Q1+0Q) and Q # (R2R1- R1+R,02R-1)

4. ANALYSIS OF RESULT.

The above results indicate that dynamic buckling load increases if the structure is less
imperfect. The results also show that dynamic buckling load increases with increased
damping. In addition, the results confirm that the only condition in which the effect of the
coupling between the buckling modes is felt is if none of the imperfection parameters in the
shape of the mode coupling is neglected. Once an imperfection is neglected the coupling
effect of the mode that is in the shape of the neglected imperfection, with any other mode is

neglected. For a graphical view of this phenomenon, we use the following values. k;=0.2,

k,=0.3,§,=0.01, &,=0.03, a,=0.01 and 0,=0.03. By varying & and a; while keeping

&, constant at 0.03 and a, = 0, the corresponding values of Ap were computed from (68).
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367 The plots of dynamic buckling load against the imperfection parameter and light viscous

368 damping of the discretized spherical cap are shown in figures 1 and 2 below.
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369 =

370
371 Figure 1: Dynamic buckling load of a spherical cap against the imperfection parameter

372 &,(E, =0.02)
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Figure 2: Dynamic buckling load of a spherical cap against the light viscous damping o,(a; =
0)

We note that the results display all the imperfection parameters stated in problems (3)-
(5).This is unlike Danielson’s problem in which the axisymmetric imperfection was neglected

for easy solution. In fact, the method is such that we can adequately account for all modal

imperfections allowed in the formulation .The contributions of the quadratic terms k&7, K,&7

and the coupling term Elfz are respectively given in the denominator of (68) by

2 2
- — S _
K é 11, K, {2|:¥:l|13 and R*¢& &, 9,,.Thus if we assume that the axysymmetric

imperfections are zero then fl = 0, and the dynamic buckling load /]D responsible for the

buckling in this case is obtained from (68) as

2 2 2
1 - - - S
/]D :Z{%} {Zslezo} {Sz 52|24+k2 52[?} |13:| (69)
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We note from (69), that, the effect of the coupling terms &,&,, &,&, andK,&? are zeros. The

effect of the quadratic term szzz is non-zero and it is this term that dominates the buckling

process. Neglecting q’l is sufficient to completely nullify the effect of 512 where the converse

is not necessarily the case. However, if the non-axymmetric imperfections are neglected

then &, = 0, and the dynamic buckling load /1D following (68) become

_alTl,;
%—4LH}P55}

We deduce from (70), that, the effect of the coupling terms &¢&,, &,&, and K,&- are again

-1

{é%+aém} (70)

zeros. The effect of the quadratic term kiff is non-zero and this singular term is the only

non-linear term that influences the buckling process. Neglecting q"z is sufficient to completely

nullify the effect of 522 where the converse is not necessarily the case.

5. CONCLUSION.

From the above discussions, we note that while neglecting the imperfection parameters

fl and 4’2 automatically implies, among other things, neglecting the effects of the non-linear

terms K& and K,& respectively. Also, we observe that the only condition under which the
effect of the coupling term Elfz would be felt, is when the imperfection parameters & and

52 are not equal to zero. Moreover, our results confirm those obtained by [21] . Finally, we

notice that we can determine the value of the dynamic buckling load /]D for whatever

number of modal imperfections.
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