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 5 
 6 
 7 
ABSTRACT 8 

This paper determines the dynamic buckling load of a lightly and viscously damped 

imperfect spherical cap with a step load. The spherical cap is discretized into a pre-buckling 

symmetric mode and a buckling mode that consists of axisymmetric and non-axisymmetric 

buckling modes. The imperfection is taken at the shape of the buckling mode. The inherent 

problem contains a small parameter which necessitated the adoption of regular perturbation 

procedures, using asymptotic technique. The general result is designed to display the 

contributions of each of the terms in the governing differential equations. We deduce the 

results for the respective special cases where the axisymmetric imperfection parameter, 

namely 
−

1ξ , and the non-axisymmetric imperfection parameter 
−

2ξ , are zeros. We also 

determine the effects of each of the non-linear terms as well as the effects of the coupling 

term.  

Keywords: Spherical cap, step load, dynamic buckling, imperfection parameter. 9 

 10 

1. INTRODUCTION. 11 

The subject of dynamic buckling of elastic structures has been a thriving area of 12 

investigation ever since [1-3] developed the discipline of dynamic stability of elastic 13 

structures from the original static consideration that was prevalent before this time. Over the 14 

years, many investigations on dynamic stability of elastic structures have been added to the 15 

original sketchy and scattered pieces that saw the genesis of dynamic buckling of elastic 16 

structures as a research interest. Among the many scholarly investigations that have come 17 

to light include [4], [5], [6], [7] and [8], who investigated the dynamic buckling, of two-degree 18 

– of freedom systems with mode interaction under step loading. Mention must also be made 19 

of relatively recent investigations which include [9], who investigated the dynamic buckling of 20 

thin cylindrical shells under axial impact, [10-11], who studied the nonlinear dynamic 21 

buckling of stiffened plates under in-plane impact load. 22 

  23 

But by far, the investigation that concerns us in this study is that by [12], who investigated 24 

the dynamic buckling loads of imperfection-sensitive structures from perturbation 25 
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procedures. His analysis was predicated primarily on the studies earlier enunciated by [1-3]. 26 

Other Pertinent investigations include those by [13], [14] and [15, 16], among others. 27 

 28 

However, a cursory appraisal of all the investigations to date reveals that the phenomenon of 29 

damping has been given very little or no attention at all in the dynamic buckling process. We 30 

are of the strong opinion that since dynamic buckling process is a time dependent process, 31 

the effect of damping, no matter how slight, should not be overlooked. In this investigation, 32 

the presence of a small viscous damping is therefore assumed and given some level of 33 

prominence. Of course, the result obtained is far more representative of the actual physical 34 

life situation. To this end, we remark that a few of the many existing investigations that have 35 

tended to incorporate damping include the studies by [17-20], among others.  36 

 37 

The layout of this investigation is as follows: 38 

We shall first write down the mathematical equations satisfied by the structure investigated. 39 

 40 

We shall next develop asymptotic techniques, using perturbation procedures to solve the 41 

governing equations analytically. We note that dynamic bucking problems are always non 42 

linear and therefore, closed-form exact solutions are not always possible. Therefore, regular 43 

perturbation method provides a suitable alternative to the solution of such problems, 44 

particularly when the problems contain small parameters in which asymptotic series 45 

expansion can always be invoked. 46 

 47 

We shall lastly make pertinent deductions. 48 

49 
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 50 

There are five sections in this paper. Section two examines the dynamic buckling load of an 51 

imperfect viscously damped spherical cap stressed by a step load. Section three introduces 52 

the viscous damping to Danielson’s results. Section four considers the analysis of results 53 

while section five ends this work with a conclusion. 54 

 55 
2. THE DYNAMIC BUCKLING LOAD.  56 

 57 

Danielson, had, for simplicity, assumed that the normal displacement ( )TyxW ,,  of the 58 

spherical cap was given as 59 

( ) ( ) ( ) ( ) ( ) ( ) ( )yxWTyxWTyxWTTyxW ,,,,, 221100 ξξξ ++=                                              (1) 60 

where ( )yxW ,0  is the pre-buckling mode and ( ) ( )yxWyxW ,,, 21  are the axisymmetric and 61 

non-axisymmetiic modes respectively. ( ) ( )TT 10 ,ξξ  and ( )T2ξ  are the respective time 62 

dependent amplitudes of the associated modes. Imperfection 
−

W was introduced as 63 

2211 WWW
−−−

+= ξξ                                                                                                                  (2) 64 

where 21,WW  still have meanings as before and 
−−

21,ξξ  are the imperfect amplitudes 65 

assumed to be small relative to unity. On assuming suitable forms for 210 ,, WWW and 66 

substituting same into the compatibility and dynamic equilibrium equations and simplifying, 67 

using his assumptions, Danielson obtained the following coupled differential equations for 68 

step loading 69 

( )Tf
dT

d λξξ
ω

=+ 02
0

2

2
0

1
                                                        (3)               70 

( ) 01
2
22

2
11012

1
2

2
1

1
1 ξξξξξξξ

ω
−

=+−−+ kk
dT

d
                                                              (4)                                           71 

( ) 0221022
2

2

2
2

1
1 ξξξξξξξ

ω
−

=+−+
dT

d
                                                                    (5)   72 

( ) ( ) .2,1;000 / === iii ξξ
                       

 73 

Here, ( )Tf  is the loading history which in our investigation, (as in Danielson’s case), is the 74 

step load characterized by 75 
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( ) { 0,1
0,0

>
<= T

TTf    ,                                                                                                                     (6) 76 

and, λ ,is the load parameter, considered to be non-dimensionalized and satisfies the 77 

inequality .10 << λ  78 

In our guest for solution, we are to determine a particular value of λ , called the dynamic 79 

buckling load represented by Dλ and which satisfies the inequality .10 << Dλ   We define 80 

the dynamic buckling load λD as the largest load parameter such that the solution to the 81 

damped version of problems (3)-(6) remains bounded for all time T>0. As in (3)-(5), we note 82 

that 2,1,0; =iiω are the circular frequencies of the associated modes 10,ξξ  and 2ξ  83 

respectively while 2k  and 2k are constants considered positive 84 

  85 
3. THE USE OF VISCOUS DAMPING IN DANIELSON’S RESULT S. 86 

 87 

The present study is an extension of Danielson’s problem to the case where a small viscous 88 

damping is present. We however avoid Danielson’s method (who used Mathieu – type of 89 

instability), for, as noted by [3, page 100], Mathieu – type  of instability is always associated 90 

with many cycles of oscillations as opposed to just one shot of oscillation that triggers off 91 

dynamic buckling. 92 

For simplicity of analysis, we assume the existence of damping on the buckling modes. 93 

Since this damping must be only proportional to the velocity, we add the terms 
dT

d
c 1

1

ξ
 and 94 

dT

d
c 2

2

ξ
 to (4) and (5) respectively and the formulation now becomes 95 

( )Tf
dT

d λξξ
ω

=+ 02
0

2

2
0

1
                                                                                                         (7)                                                96 

( ) 01
2
22

2
1101

1
12

1
2

2
1

1
1 ξξξξξξξξ

ω
−

=+−−++ kk
dT

d
c

dT

d
                                                             (8)                                            97 

( ) 022102
2

22
2

2

2
2

1
1 ξξξξξξξξ

ω
−

=+−++
dT

d
c

dT

d
                                                                      (9) 98 

where 2,1, =ici  are the damping constants and which satisfy the inequality .10 << ic  99 

Using ( ) 1=Tf  and substituting (6) into (7) we have  100 
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λξξ
ω

=+ 02
0

2

2
0

1
dT

d
                                                                                                              (10) 101 

( ) 01
2
22

2
1101

1
12

1
2

2
1

1
1 ξξξξξξξξ

ω
−

=+−−++ kk
dT

d
c

dT

d
                                                           (11)                                                                                              102 

( ) 022102
2

22
2

2

2
2

1
1 ξξξξξξξξ

ω
−

=+−++
dT

d
c

dT

d
                                                                   (12) 103 

Now using, 104 

,0Tt ω=  105 

so that 106 

( ) ( ) ( ) ( )
2

2
2

2

2

0 ,
dt

d

dT

d

dt

d

dT

d
oωω == , 107 

Then ( ) ( )1210 −  become       108 

λξξ =+ 02
0

2

dt

d
                                                                                                                    (13) 109 

              110 
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22

2

0

12
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2

0
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11
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2
101

2
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1 ξξ
ω
ωξ

ω
ωξ

ω
ωξξ

ω
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ω
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+
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dt

dc

dt

d
       (14)                                                                                                                         111 
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2

0

2
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2

0

2
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2

0

22
2
0

2
202

2
2

2

1 ξξ
ω
ωξξ

ω
ωξξ

ω
ωξ

ω
ωωξ −
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+








+

dt

dc

dt

d
                           (15)  112 

Next, we let                                                                                                                                                                       113 

2

1

2

0

2

0

1

0

2
22

2
0

2
11

1 ,,,2,2 







=====

ω
ω

ω
ω

ω
ω

ω
ωεα

ω
ωεα SRQ

cc
                                              (16)                                                                          114 

where, 115 

2

0

12








==

ω
ωλλε Q ,                                                                                                          (17)  116 

 and 117 

1010,10,10,10 21 <<<<<<<<<< εαα andRQ          118 

Substituting (16) into (14) and (15) yield 119 
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λξξ =+ 02
0

2

dt

d
                                                                                                                    (18)                              120 

( ) 01
22

2
2

2
2

1
2

101
21

12
1

2

12 ξξξξξξξεαξ −
=+−−++ QQkQkQ

dt

d

dt

d
                                       (19)                                                                                               121 

( ) 02
2

21
2

02
22

22
2

2

12 ξξξξξξξεαξ −
=+−++ RRR

dt

d

dt

d
                                                      (20)   122 

( ) ( ) .2,1;00 / === ioii ξξ
                                                                                                  

 123 

As in [ ]31− , we neglect the pre-buckling inertia term, so that from (18) we get 124 

λξ =0                                                                                                                                  (21) 125 

On simplification, using (21), equations (19) and (20) yield 126 

−
=+−−++ 1

2
2

2
2

2
1

2
111

21
12

1
2

2 ξεξξεξξξεαξ
QkQkQ

dt

d

dt

d
                                                 (22)  127 

and                                                             128 

−
=+−++ 221

2
22

22
22

2
2

2 ξεξξξεξξεαξ
SRSR

dt

d

dt

d
                                                           (23)            129 

( ) ( ) 2,1;000 / === iii ξξ
 

130 

where,
 131 

.
2









=

Q

R
S  132 

We assume a small time scaleτ such that, 133 

tετ =                                                                                                                                 (24a)  134 

and 135 

τεξξξ ,,
/

itii +=                                                                                                                  (24b)                                                                                                                        136 

2,1;2 ,
2

,,
// =++= iitittii τττ ξεεξξξ                                                                                    (24c) 137 

We denote our perturbation parameter by ε  so that 138 

( ) ( )( ) i

i

i tt ετςξ ∑
∞

=

=
1

1 ,                                                                                                            (25)                                                                                                                                                         139 

( ) ( )( ) i

i

i tt ετηξ ,
1

2 ∑
∞

=

=                                                                                                           (26) 140 

Substituting (25) and (26) into (22) and (23), using (24b) and (24c), equating terms of the 141 

orders of ε  we get, 142 
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( ) ( ) −
=+ 1

121
, ξςς Qtt                                                                                                                  (27)                                                             143 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
,

212
2

212
1

11
,1

222
, 22 τςηςςςαςς tttt QkQkQ −−++−=+                                           (28) 144 

and  145 

( ) ( ) −
=+ 2

121
, ξηη SRtt                                                                                                              (29)                                     146 

( ) ( ) ( ) ( ) ( ) ( ) ( )1121
,

11
,2

222
, 22 ηςηηηαηη τ RSR tttt −−+−=+                                                           (30)                  147 

( )( ) ( )( ) 2,1,00,00,0 === iii ης                                                                                           (31)      148 

( )( ) ( )( ) 2,1,00,00,0 ,, === ii
t

i
t ης                                                                                           (32)  149 

( )( ) ( )( ) ( )( ) ( )( ) 2,1,00,00,00,00,0 ,
1

,,
1

, ==+=+ ++ iii
t

ii
t ττ ηηςς                                                     (33)            150 

The solution of (27) using (31) and (32) is 151 

( )( ) ( ) ( ) 2
1

11
1 sincos,

Q
QtbQtat

−

++= ξτττς                                                                      (34a)                                                      152 

( ) ( ) 00;0 12
1

1 =−=
−

b
Q

a
ξ

                                                                                                    (34b)                                                               153 

Similarly, the solution of (28) is 154 

( )( ) ( ) ( )
2
2

22
1 sincos,

R

S
RtbRtat

−

++= ξτττη                                                                    (35a)                155 

( ) ( ) 00;0 22
2

2 =−=
−

b
R

S
a

ξ
                                                                                                  (35b) 156 

Substituting using (34a) and (35a) into (28), we have 157 

( ) ( ) [ ]













++++−−=+

−

2
1

11111
222

,

ξ
tsinbtcostcosbtsinα2

Q
QQaQQQaQQtt ςς158 






 −+++− Rt2cos][
2
1

Rt2sin][
2
1

k 2
2

2
222

2
2

2
2

2
2 bababaQ

159 
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++−

−−

sinRt
R
ξS2

cosRt
R
ξS2

k 2
22

2
222

2

ba
Q

160 






 −++++ t2cos][
2

1
t2sinba][

2

1
k 2

1
2
111

2
1

2
1

2
1 QbaQbaQ

161 














+++

−−

tsin
ξb2

tcos
ξa2

k
2

11
2

112
1 Q

Q
Q

Q
Q  [ ]tcosbtsina2 '

1
'
1 QQQ −+                          (36) 162 

Now, to ensure a uniformly valid asymptotic solution in t, we equate to zero, in (36), the 163 

coefficients of cosQ t and sin Q t to get 164 

ϕα 111
/
1 abb =+                                                                                                                  (37a) 165 

and 166 

ϕα 111
/
1 baa −=+                                                                                                                (37b) 167 

where, 168 

( ) ( )
τd

d=/
, 169 






 +=
−

1121
2
1 ξϕ k
Q

 170 

Simplification of (37a, b) yield 171 









+







+−=+

ϕ
α

ϕ
αϕϕα

/
11

2
1

1
/
11

//
1

b
bbb  172 

02
2
1

1
/
11

//
1 =








+++

ϕ
αϕϕα bbb  173 

( ) ( ) 2
1/

11 0;00
Q

bb

−

−== ξϕ
                                                                                                   (37c) 174 

and 175 

−=+ /
11

//
1 aa α 








+








+

ϕ
α

ϕ
αϕϕ

/
11

2
1

1

a
a  176 
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02
2
1

1
/
11

//
1 =








+++

ϕ
αϕϕα aaa  177 

( ) ( ) 2
11/

12
1

1 0;0
Q

a
Q

a

−−

=−= ξαξ
                                                                                             (37d) 178 

The remaining part of the equation in the substitution into (28) as obtained from (36) is  179 

( ) ( ) ( ) ( )[ ]QtpQtpQkqQtt 2cos2sin 10
2

11
222

, ττςς ++=+                                            180 

( ) ( ) ( ) ( )[ ]RtpRtpRtpRtpQk sincos2cos2sin 5432
2

2 ττττ +++−                             (38a) 181 

( )( ) ( )( ) ( )( ) 00,00,0;00,0 2
,

2
,

2 =+= τςςς t                                                                               (38b) 182 

where,  183 

( ) ( ) ( ) ( ) [ ]2
1

2
111101

2
20

2
12

_

1
1 2

1
;; bapbaprQkrQk

Q
q −==−+= ττττξ

                                (38c)  184 

( ) ( ) [ ] ( ) ( )
2

22
52

22
4

2
2

2
23222

2
;

2
;

2
1

;
R

Sb
p

R

Sa
pbapbap

−−

==−== ξτξτττ                            (38d)                                                               185 

( ) [ ] ( ) [ ]2
1

2
11

2
2

2
20 2

1
;

2
1

barbar +=+= ττ                                                                               (38e)   186 

( ) ( ) ( ) ( )
4

2_

2
2

324

2_

1
10 2

0;00;
2

0;00
R

S
pp

Q
pp

ξξ ====                                                           (38f)      187 

( ) ( ) ( ) ( ) ;
2

0;
2

0;00;
2

0 4
2

2

14
1

054

2

2
2

4

22

R

S
r

Q
rp

R

S
p

−−−

==== ξξξ
                                                 (38g)                            188 

The solution of (38a), using (38b) is 189 

( )( ) ( ) ( ) ( ) ( )[ ]QtpQtp
k

Q

q
QtbQtat 2cos2sin

3
sincos, 76

1
2
1

33
2 τττττς +−++=  190 

                                    191 

( ) ( ) ( ) ( )[ ]RtpRtpRtpRtpQk sincos2cos2sin 111098
2

2 ττττ +++−                            (39a)          192 

  ( ) ( )
3

_

11
32

2

22

2_

21

2_

1101

_

3 0;0
Q

bl
R

S
klkla

ξαξξξ −=




++=                                      (39b)  193 

where 194 



E-mail address: ozoigbogerald@yahoo.co.uk 
 

[ ] [ ]22222242140 4
2

42
1

2
1

;
6
1

2
1

;
1

RQRRQ
l

QQ
l

Q
l

−
−

−
+=+−=−=                                             (39c)            195 

( ) ( ) ( ) ( ) ( ) ( )
22

3
922

2
8227116 4

;
4

;;
RQ

p
p

RQ

p
pbapbap

−
=

−
=== ττττττ                                             (39d)               196 

( ) ( ) ( ) ( ) ( ) 00;; 1122
5

1122
4

10 =
−

=
−

= p
RQ

p
p

RQ

p
p

ττττ                                                             (39e)                                                                     197 

( ) ( ) ( ) ( ) [ ] ( ) [ ]224
2

2

10224

2
2

2

984

1

2_

76

2

2
0;

42
0;00;

2
0;00

RQR

S
p

RQR

S
pp

Q
pp

−
=

−
====

−
ξξξ

     (39f) 198 

Substituting using (34a) and (35a) into (30) we get,     199 

( ) ( ) [ ] [ ]

2
sincos

cossin2cossin2
2

2
2

22

'
2

'
2222

222
,

R

R

S
RtbRta

SRtbRtaRRtRbRtRaRtt

−




 ++

++−−+−−=+

ξ

αηη
                                                                               200 































−−+−++

+++−−+

++++
−−−−−−

t]sin[][t]cos[][

t]sin[][t]cos[][

tsin
R

ξS2
tcos

R

ξS2
sinRt

ξ2
cosRt

ξ2

][

ξξS2

21212121

21212121

2
21

2
21

2
12

2
12

2
21

RQbaabRQbbaa

RQabbaRQbbaa

Q
b

Q
a

Q

b

Q

a

QR

                                              (40) 
201 

 Now, to ensure a uniformly valid asymptotic solution in t, we equate the coefficients of cosRt 202 

and sinRt to zero. This will ensure a finite at infinite time, i.e. as t tends to infinity, such terms 203 

also tends to infinity thereby making the solution not to be bounded, hence non-uniform. 204 

Such terms are called secular terms and our aim is to get rid of them.  205 

 Φ=+ 222
/
2 abb α                                                                                                              (41a) 206 

and 207 

Φ−=+ 222
/
2 baa α                                                                                                            (41b) 208 

where,                209 

.
2
1

2
1

2














−=Φ

−

Q

R
S

R

ξ

 

210 

Simplification of (41a, b) yield

 

211 
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[ ]222
/
22

//
2 abbb αα +ΦΦ−=+  212 

[ ]






 +
Φ

+ΦΦ−=+ 22
/
2

2
2

/
22

//
2 bbbbb ααα  213 

[ ] 02 2
2

2
2

/
22

//
2 =+Φ++ αα bbb  214 

( ) ( )
2

2/
22 0;00

R

S
bb

−
Φ−== ξ

                                                                                               (41c)
 215 

And                                                                                           216 

−=+ /
22

//
2 aa α [ ]222 ba α−ΦΦ  217 

[ ]




 +
Φ

+ΦΦ−=+ 22
/
2

2
2

/
22

//
2 aaaaa ααα  218 

[ ] 02 2
2

2
2

/
22

//
2 =+Φ++ αα aaa  219 

( ) ( )
2

22/
22

2
2 0;0

R

S
a

R

S
a

−−

−=−= ξαξ
                                                                                    (41d) 220 

The remaining part of the equation in the substitution into (30) as obtained from (40) is  221 

          222 

( ) ( ) ( ) ( ) ( ) [ ]
( ) [ ] ( ) [ ] ( ) [ ]







−+−+++
+++

−=+
RQptRQptRQp

tRQpQtpQtpR
qRtt sincossin

cossincos

2 171615

141312
2

2
222

, τττ
τττ

ηη223 

( )( ) ( )( ) ( )( ) 00,00,0;00,0 1
,

2
,

2 =+= τηηη t                                                                               (42b) 224 

where, 225 

( ) ( ) ( ) 2121142
21

132
21

122
21

2
2

2

2 ;
2

;
2

; bbaap
R

Sb
p

R

Sa
p

Q

S

R

S
q −===−=

−−−−−

τξτξτξξξ
             (42c) 226 

 227 

( ) ( ) ( ) 112117212116212115 ;; baabpbbaapabbbp −=+=+= τττ                                         (42d)                                              228 

( ) ( ) ( ) ( ) ;00;0;00;
2

0 1522
21

141322
21

12 ====
−−−−

p
RQ

S
pp

RQ

S
p

ξξξξ
                                           (42e)                           229 

( ) ( ) 00;0 1722
21

16 ==
−−

p
RQ

S
p

ξξ
                                                                                              (42f) 230 



E-mail address: ozoigbogerald@yahoo.co.uk 
 

The solution of (42a) using (42b) is        231 

( )( ) ( ) ( )
( ) ( )
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ] 
















−+−
++++

++
−++=

tRQptRQp

tRQptRQp

QtpQtp

R

q
RtbRtat

sincos

sincos

sincos

2
1

sincos,

2322

2120

1918

2
2

44
2

ττ
ττ

ττ
τττη (43a         232 

( ) ( )
3

22
4421

2
32

2
4 0;0

R

S
blSRlSa

−
−−−

−=+= ξαξξξ                                                              (43b) 233 

where, 234 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] 
















−
+

+
−

−
−+=

QRRQQQRRQQQRRQQR
l

2

1

2

12
2
11

22222224              (43c) 235 

  236 

 ( ) ( ) ( ) ( ) ( ) ( )
[ ]QRQ

p
p

QR

p
p

QR

p
p

R
l

+
=

−
=

−
=−=

2
;;;

1 14
2022

13
1922

12
1843

ττττττ                          (43d)  237 

 238 

( ) ( )
[ ] ( ) ( )

[ ] ( ) ( )
[ ]QRQ

p
p

QRQ

p
p

QRQ

p
p

−
=

−
=

+
=

2
;

2
;

2
17

23
16

22
15

21

ττττττ
                                   (43e) 239 

( ) [ ] ( ) ( ) [ ]QRRQ

S
pp

QRRQ

S
p

+
==

−
=

−−−−

2
0;00;

2
0 23

21
20192222

21
18

ξξξξ
                                       (43f) 240 

 241 

 ( ) ( ) [ ] ( ) 00;
2

0;00 2322
21

2221 =
−

==
−−

p
QRRQ

S
pp

ξξ
                                                            (43g) 242 

 243 

Next, using (34a), (39a) and (35a), (43a) we deduce the displacements as 244 

( ) ( )( ) ( )( ) ...,, 221
1 ++= ετςετςξ ttt                                                                                   (44a) 245 

and              246 

( ) ( )( ) ( )( ) ...,, 221
2 ++= ετηετηξ ttt                                                                                  (44b) 247 

We seek the maximum displacement for both ( )t1ξ  and ( )t2ξ . To achieve this, we shall first 248 

determine the critical values of t andτ  for each of ( )t1ξ  and ( )t2ξ  at their maximum values. 249 

The condition for the maximum displacements of ( )t1ξ  and ( )t2ξ  is obtain from (24b).hence 250 

τεξξ ,1,1 +t ,                                                                                                                        (45a) 251 
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τεξξ ,2,2 +t ,                                                                                                                       (45b) 252 

We know from (44a, b) that             253 

( ) ( )( ) ( )( ) ...,, 221
1 ++= ετςετςξ ttt                                                                                   (46a) 254 

( ) ( )( ) ( )( ) ...,, 221
2 ++= ετηετηξ ttt                                                                                  (46b) 255 

On applying (45a, b) to (46a, b), we get 256 

( )( ) ( )( )[ ]...,, 22
,

1
,,, ++=+ ετςετςεςς τ aataatt tt

                                                                 
 257 

                                                                                                                                                                                  258 

+ε ( )( ) ( )( )[ ] 0...,, 22
,

1
, =++ ετςετς ττ aaaa tt

                                                                          (47a)
 259 

and 260 

( )( ) ( )( )[ ]...,, 22
,

1
,,, ++=+ ετηετηεηη τ cctcctt TT   261 

                                                                                                                                                                              262 

+ε ( )( ) ( )( )[ ] 0...,, 22
,

1
, =++ ετηετη ττ cccc TT

                                                                         
(47b) 263 

where, ( )aat τ,  and ( )ccT τ,  are the values of t and τ at the maximum displacement of  264 

( )τς ,t  and ( )τη ,t  respectively. 265 

We now expand (47a, b) in a Taylor series about 0,0 == aa tt τ  and 0,0 == cc TT τ ,and 266 

thereafter equate to zero the terms of the same orders of ε  to get                   267 

( )( ) 00,0
1

, =ttς                                                                                                                      (48a)                                                                                                                            268 

( )( ) ( )( ) ( )( ) ( )( ) 00,0,0,0, 0
1

,0
2

,0
1

,00
1

,1 =+++ tttttt tttt ττ ςςςς                                                           (48b) 269 

and 270 

( )( ) 00,0
1

, =Ttη                                                                                                                     (49a)                                                                                                                       271 

( )( ) ( )( ) ( )( ) ( )( ) 00,0,0,0, 0
1

,0
2

,0
1

,00
1

,1 =+++ TTTTTT tttt ττ ηηηη                                                      (49b) 272 

Substituting for ( )1
,tς  from (34a) in (48a) and simplifying we get 273 

0sin 0 =Qt                                                                                                                        (50a) 274 

A further simplification of (50a) gives 275 

Q
t

π=0                                                                                                                                (50b) 276 

A similar solution for (49a) is 277 
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R
T

π=0                                                                                                                               (50c) 278 

Next, we deduce from (48b) that 279 

 ( )( )
( )( ) ( )( ) ( )( )[ ]0,0,0,

0,

1
0

1
,0

2
,0

1
,0

0
1

,
1 tttt

t
t tt

tt
ττ ςςς

ς
++−=                                                          (51a) 280 

Simplification of the following terms are however necessary in this analysis, 281 

( )( ) ( )( ) 810
1

,72
2

26115110
2

, 0,;0,
22

ltlSklklt tt

−−−−
=−+= ξςξξξας                                                 (51b) 282 

( )( ) ( )( ) ( )( ) 1010
1

10
1

,910
1

, 20,;0,;0, lttlt tt

−−−
=== ξςξςξς τ                                                            (51c) 283 

( )( ) ( )( ) ;00,;20, 0
1

,13

2

22212111110
2

22

=




++=
−−−

tl
R

S
klklt tςξξξς                                            (51d) 284 

where 285 

[ ]223
0

2

72
0

625 4
2

;
3
2

;
1

RQR

RtSinQ
l

Q

QtSin
l

Q
l

−
===                                                                      (51e) 286 

 287 

 42124112102
1

98 3
11

;
1

;
1

;;
QQ

l
Q

l
Q

l
Q

l
Q

l −===−== αϕ
                                                  (51f) 288 

                              289 

 [ ] [ ] 
















−
+

−
−

−
+

−
−−=

2222
2

2222213

2
4

1
4

1
42

1
1

RQRQ
Q

RQRRQ
l                     (51g) 290 

 291 

On substituting (51, b-d) on (51a), we have 292 

980722611511 lltlSklklt ++−+=
−−

ξξα                                                                                (52) 293 

Similarly, deducing from (49b) yields 294 

( )( )
( )( ) ( )( ) ( )( )[ ]0,0,0,

0,

1
0

1
,0

2
,0

1
,0

0
1

,
1 tTTT

T
T tt

tt
ττ ηηη

η
++−=                                                       (53a) 295 

We however note the following simplifications 296 

( )( ) ( )( ) 1720
1

,1621152
2

14220
2

, 0,;0, lSTlSlSlST tt

−−−−−
=++= ξηξξξξαη τ                                      (53b) 297 

( )( ) ( )( ) ( )( ) 2020
1

20
1

,182
2

0
1

, 20,;0,;0, lSTSTlST tt

−−−
=−== ξηξηξη τ                                          (53c) 298 
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( )( ) ( )( ) ;00,;0, 0
1

,1921
2

212
2

0
2 =+=

−−−
TlSRlST tηξξξη                                                          (53d) 299 

where 300 

03152
0

14 sin;
cos

RTRll
R

RT
l −=−=                                                                                    (53e) 301 

[ ] [ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ] 
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−−−

+
++−

+
−

−
−−=

QRRQQ
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QRRQ
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QRQR
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R
RTSlRl

2

sin

2

sin

2

cossin2

2
sin

2
0

2
0

2
0

222
0

2

04
3

16                 (53f) 302 

 
4214212202

2
1817

1
;

1
;

1
;;

R
l

R
l

R
l

R
l

R
l ===−=Φ= α

                                                          (53g)          303 

 [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ] 















−
−+

+
++

−
+−=

QRRQQ

TRQ

QRRQQ

TRQ

QRRQ

QT
ll

2

cos

2

coscos2
2
1

2
0

2
0

2222
0

419                  (53h) 304 

On substituting (53, b-d) on (53a), we have 305 

181701611421 llTllT +++=
−

ξα                                                                                               (54) 306 

We, now, determine the maximum values of ( )tς and ( )tη  say aς  and cη  respectively by 307 

evaluating (46 a, b) at the critical values namely aatt ττ == ,  and ., ccTT ττ ==  308 

( )( ) ( )( ) ...,, 221 ++= ετςετςς aaaaa tt                                                                                (55a) 309 

( )( ) ( )( ) ...,, 221 ++= ετηετηη ccccc TT                                                                              (55b) 310 

Expanding (55 a) in Taylor series using, 311 

[ ]......; 2
2

102
2

10 +++==+++= tttttttt aaa εεεετεε                                                 (56a) 312 

we have 313 

( )( ) ( )( )[ ] ( )( ) [ ][ ]...0,...0,0, 1100
1

,2
2

10
1

,0
1 ++++++= εεςεεςςες τ ttttttt ta   314 

( )( ) ...0, 2
0

2 ++ ες t                                                                                                              (56b) 315 

Regrouping the terms in orders of ε  yields 316 

( )( ) ( )( ) ( )( ) ( )( )[ ] ...0,0,0,0, 0
2

0
1

,00
1

,1
2

0
1 ++++= tttttt ta ςςςεεςς τ                                            (56c) 317 

On substituting the terms in (56c) from (51, b-d), we have 318 

...22 2
13

2

2221211111910101

22

+
















++++=
−−−−−

εξξξξεξς l
R

S
klklltla                                   (57)                                                                                                                      319 
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Similarly, expanding (55 b) in Taylor series using, 320 

[ ]......; 2
2

102
2

10 +++==+++= TTTTTTTT ccc εεεετεε                                             (58a) 321 

we have 322 

( )( ) ( )( )[ ] ( )( ) [ ][ ]...0,...0,0, 1100
1

,2
2

10
1

,0
1 ++++++= TTTTTTT tc εεηεεηηεη τ  323 

( )( ) ...0, 2
0

2 ++ εη T                                                                                                             (58b) 324 

Regrouping the terms in orders of ε  yields 325 

( )( ) ( )( ) ( )( ) ( )( )[ ] ...0,0,0,0, 0
2

0
1

,00
1

,1
2

0
1 ++++= TTTTTT tc ηηηεεηη τ                                      (58c) 326 

On substituting the terms in (58c) from (53, b-d), we have 327 

...2 2
1921

2
212

2
182

2
0202 +




 +++=
−−−−−

εξξξξεξη lSRlSlSTlSc                                         (59) 328 

The net maximum displacement mξ  is 329 

( ) ( )ccaacam Tt τητςηςξ ,, +=+=                                                                                     (60) 330 

Substituting for terms in (60) from (57) and (59) we get                  331 

...2
21 ++= εεξ CCm                                                                                                         (61a) 332 

where 333 

1921
2

13

2

2221211242
2

2312221

22

; lSRl
R

S
klklSlClC

−−−−−−
+




+++== ξξξξξξ                         (61b) 334 

 180212490112320210122 ;2;22 lTllltlllSll +=+=+=
−−

ξξ                                                   (61c) 335 

As noted by [ ]31−  and [ ]21 ,the condition for dynamic buckling is 336 

0=
md

d

ξ
λ

                                                                                                                             (62) 337 

As in [ ]2423− , applying the method of reversal of series of (61a), we get 338 

...2
21 ++= mm dd ξξε                                                                                                           (63)  339 

Substituting for mξ  from (61a) in (63) and equating powers of orders ofε , we get 340 

3
1

2
2

1
1 ,

1

C

C
d

C
d −==                                                                                                            (64) 341 

The maximization in (62) is better done from (63), thus implementing (62) using (63) we 342 

have 343 
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( )
2

2
1

2C

C
Dm =λξ                                                                                                                     (65) 344 

where,  ( )Dm λξ  is the value of the net displacement at buckling. In determining the dynamic 345 

buckling load, we evaluate (63) at 346 

Dλλ =  347 

to yield 348 

( )[ ]( )DmDm dd λλξλξε =+= 21                                                                                               (66)  349 

On substituting for terms 1d and 2d from (64) and ( )Dm λξ  from (65) in (66) and simplify to get  350 

2

1

4C

C
D =ελ                                                                                                                          (67) 351 

The expansion of (67) gives [using (61b, c)] 352 

1

1921
2

13

2

2221211242
2

231

202101

2

1

0

22

22
4

1

−

−−

−−−−

−−



















+






+++





 +







=

lSR

l
R

S
klklSl

lSlD

ξξ

ξξξξ
ξξ

ω
ωλ         (68) 353 

Here, (68) gives the formula for evaluating the dynamic buckling load Dλ , and is valid for 354 

)1,1,2,,2,1( QQQQR +−≠  and )12,0,1,1,2,( −+−≠ RRRRRQ  355 

 356 

4. ANALYSIS OF RESULT. 357 

 358 

The above results indicate that dynamic buckling load increases if the structure is less 359 

imperfect. The results also show that dynamic buckling load increases with increased 360 

damping. In addition, the results confirm that the only condition in which the effect of the 361 

coupling between the buckling modes is felt is if none of the imperfection parameters in the 362 

shape of the mode coupling is neglected. Once an imperfection is neglected the coupling 363 

effect of the mode that is in the shape of the neglected imperfection, with any other mode is 364 

neglected. For a graphical view of this phenomenon, we use the following values. k1 = 0.2,  365 

k2 = 0.3, 1ξ
−

 
= 0.02, 2ξ

−
=  0.03, α1 = 0.01 and α2 = 0.03. By varying 2ξ

−
and α2 while keeping 366 

1ξ
−

constant at 0.02 and α1 = 0, the corresponding values of λD were computed from (68). 367 
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The plots of dynamic buckling load against the imperfection parameter and light viscous 368 

damping of the discretized spherical cap are shown in figures 1 and 2 below.  369 

   370 

 371 
Figure 1: Dynamic buckling load of a spherical cap against the imperfection parameter 372 

2ξ
−

( 0.02ξ1 =
−

)  373 
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 374 
 375 
Figure 2: Dynamic buckling load of a spherical cap against the light viscous damping α2(α1 = 376 

0)  377 

We note that the results display all the imperfection parameters stated in problems (3)-378 

(5).This is unlike Danielson’s problem in which the axisymmetric imperfection was neglected 379 

for easy solution. In fact, the method is such that we can adequately account for all modal 380 

imperfections allowed in the formulation .The contributions of the quadratic terms 2
22

2
11 , ξξ kk  381 

and the coupling term 21ξξ are respectively given in the denominator of (68) by 382 

132221111

22

, l
R

S
klk 




−−
ξξ  and 19

_

2

_

1
2 SlR ξξ .Thus if we assume that the axysymmetric 383 

imperfections are zero then ,01 =
−

ξ and the dynamic buckling load Dλ responsible for the 384 

buckling in this case is obtained from (68) as 385 

1

13

2

222242
2

202

2

1

0
2

2
4
1

−
−−−

















+













= l

R

S
klSlSD ξξξ

ω
ωλ                                                (69) 386 
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We note from (69), that, the effect of the coupling terms 21ξξ , 01ξξ  and 2
11ξk  are zeros. The 387 

effect of the quadratic term 2
22ξk  is non-zero and it is this term that dominates the buckling 388 

process. Neglecting 
−

1ξ is sufficient to completely nullify the effect of 2
1ξ where the converse 389 

is not necessarily the case. However, if the non-axymmetric imperfections are neglected 390 

then ,02 =
−

ξ and the dynamic buckling load Dλ following (68) become 391 

1

1211231101

2

1

0

2

2
4
1

−
−−−









+













= lkllD ξξξ

ω
ωλ                                                                        (70) 392 

We deduce from (70), that, the effect of the coupling terms 21ξξ , 02ξξ  and 2
22ξk  are again 393 

zeros. The effect of the quadratic term 2
11ξk  is non-zero and this singular term is the only 394 

non-linear term that influences the buckling process. Neglecting 
−

2ξ is sufficient to completely 395 

nullify the effect of 2
2ξ where the converse is not necessarily the case. 396 

 397 

5. CONCLUSION. 398 

 399 

From the above discussions, we note that while neglecting the imperfection parameters 400 

−

1ξ and 
−

2ξ automatically implies, among other things, neglecting the effects of the non-linear 401 

terms 2
11ξk  and 2

22ξk  respectively. Also, we observe that the only condition under which the 402 

effect of the coupling term  21ξξ  would be felt, is when the imperfection parameters 
−

1ξ and 403 

−

2ξ are not equal to zero. Moreover, our results confirm those obtained by [ ]21 . Finally, we 404 

notice that we can determine the value of the dynamic buckling load Dλ for whatever 405 

number of modal imperfections.  406 

 407 
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