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Abstract 11 

 12 

The present paper scrutinizes the principle of quantum determinism, which 13 

maintains that the complete information about the initial quantum state of a 14 

physical system should determine the system’s quantum state at any other time. As 15 

it shown in the paper, assuming the strong exponential time hypothesis, SETH, 16 

which conjectures that known algorithms for solving computational NP-complete 17 

problems (often brute-force algorithms) are optimal, the quantum deterministic 18 

principle cannot be used generally, i.e., for randomly selected physical systems, 19 

particularly macroscopic systems. In other words, even if the initial quantum state 20 

of an arbitrary system were precisely known, as long as SETH is true it might be 21 

impossible in the real world to predict the system’s exact final quantum state. The 22 

paper suggests that the breakdown of quantum determinism in a process, in which 23 

a black hole forms and then completely evaporates, might actually be physical 24 

evidence supporting SETH. 25 

 26 
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 31 

1. Introduction 32 

 33 

According to the deterministic principle, complete information about a physical system 34 

at one point in time should determine its state at any other time. Since all physical 35 

systems evolve in time according to the Schrödinger equation 𝑖ℏ 𝜕|Ψ(𝑡)⟩ 𝜕𝑡⁄ =36 

𝐻(𝑡)|Ψ(𝑡)⟩, where |Ψ(𝑡)⟩ is the time-dependent state vector of a system and 𝐻(𝑡) is the 37 

system’s time-dependent Hamiltonian, this means that one can in principle solve this 38 

equation for the given physical system with the initial condition |Ψ(0)⟩ to predict the 39 

state of the system |Ψ(𝑡)⟩ at any future time 𝑡. 40 

 41 



If we insist that not only a deterministic, unitary evolution but also a wavefunction 42 

collapse should be explained due to the Schrödinger equation, then the future state of 43 

the system |Ψ(𝑡)⟩ would always be uniquely determined through the linear map 44 

 45 

∀𝐻(𝑡)  𝒯:    |Ψ(𝑡)⟩ ← |Ψ(0)⟩      (1) 

 46 

defined by the effect of the time evolution operator 𝑈(𝐻(𝑡), 𝑡, 0) on the initial state of 47 

the system |Ψ(0)⟩: 48 

 49 

𝒯(|Ψ(0)⟩) ∶= 𝑈(𝐻(𝑡), 𝑡, 0)|Ψ(0)⟩    , (2) 

 50 

where the evolution operator 𝑈(𝐻(𝑡), 𝑡, 0) can, in the most general case, be written as 51 

 52 

𝑈(𝐻(𝑡), 𝑡, 0) = ω̂ exp(−
𝑖

ℏ
∫𝐻(𝜏) 𝑑𝜏

𝑡

0

)    , (3) 

 53 

provided that ω̂ is the time-ordered operator. Even though the Schrödinger equation 54 

cannot predict the exact result of each measurement but only the probability of these 55 

results, the linear mapping (1) represents the strictest form of determinism known in 56 

physics since it gives all the information about the system for any particular moment of 57 

time. 58 

 59 

However, the drawback of the mapping (1) is that it completely ignores the amount of 60 

time (or the number of elementary operations) required to actually solve the 61 

Schrödinger equation for the given system. 62 

 63 

To make this point clearer, let us consider the following scenario: An experimenter 64 

conducts an experiment involving an observation of a physical system at some point in 65 

time while a theoretician does the parallel calculation using the Schrödinger equation 66 

for the given system. At the initial point in time 𝑡 = 0 the experimenter sets up the 67 

apparatus as the theoretician sets up the system’s initial state vector |Ψ(0)⟩. Then, while 68 

the experimenter turns on the apparatus and monitors its functioning, the theoretician 69 

computes the evolution of the state vector |Ψ(𝑡)⟩ for the system according to the 70 

Schrödinger equation. It is clear that in order to predict the result of the observation at 71 

the moment 𝑡, the theoretician must finish up the calculation of the vector |Ψ(𝑡)⟩ ahead 72 

of that moment 𝑡 (i.e., before the experimenter sings out that the observation has 73 

occurred and the output is ready). 74 

 75 



It is naturally to assume that the vector |Ψ(𝑡)⟩ has an algorithm, i.e., that Schrödinger’s 76 

equation is solvable. Note that an algorithm here is understood in the sense of the 77 

Church–Turing thesis, that is, as a sequence of steps the theoretician with unlimited 78 

time and an infinite supply of pen and paper could follow. 79 

 80 

Let 𝒜 denote an exact algorithm for calculating the effect of the time evolution operator 81 

𝑈(𝐻(𝑡), 𝑡, 0) on the given initial state |Ψ(0)⟩ of the system characterized by the 82 

Hamiltonian 𝐻(𝑡). Suppose the amount of time taken by this algorithm is not greater 83 

than 𝑇. 84 

 85 

Then, according to the deterministic principle (applicable to all physical systems), at 86 

any moment 𝑡 > 0 the state of every physical system can be determined by the linear 87 

map 88 

 89 

∀𝐻(𝑡)  𝒯:    |Ψ(𝑡)⟩
𝑇
← |Ψ(0)⟩    , (4) 

 90 

which explicitly indicates that in order to associate the state vector |Ψ(𝑡)⟩ of the given 91 

system with its initial state |Ψ(0)⟩ the algorithm 𝒜 takes maximally (i.e., in the worst 92 

case) the amount of time 𝑇. 93 

 94 

Understandably, the upper bound 𝑇 may in general depend on the number of the 95 

system’s constituent microscopic particles 𝑁, and therefore it can be posed as a function 96 

𝑇(𝑁), whose behavior is determined by the worst-case complexity of a given 97 

Schrödinger’s equation (to be exact, by the worst-case complexity of a specific 98 

Schrödinger Hamiltonian). Thus the mapping (4) can be rewritten so as to openly 99 

contain the number 𝑁 100 

 101 

∀𝐻(𝑁, 𝑡)  𝒯:    |Ψ(𝑡)⟩
𝑇(𝑁)
←  |Ψ(0)⟩    . (5) 

 102 

This modified form of quantum determinism is clearly more realistic than that depicted 103 

in (1) since it allows for the limit on computational speed in the physical world. 104 

 105 

In fact, the form (1) implies that there is an algorithm, which can solve Schrödinger’s 106 

equation either instantaneously or so fast that algorithm’s running time 𝑇(𝑁) can be 107 

ignored 108 

 109 

∀𝐻(𝑁, 𝑡)  𝒯:    |Ψ(𝑡)⟩
𝑇(𝑁)=0
←    |Ψ(0)⟩    . (6) 

 110 



Undeniably, in the real world the worst-case running time 𝑇(𝑁) can never be equal to 111 

zero, and so 𝑇(𝑁) > 0. 112 

 113 

On the other hand, the deterministic principle demands that the worst-case running 114 

time 𝑇(𝑁) can never be greater than the time of observation 𝑡 – otherwise using the 115 

vector |Ψ(𝑡)⟩ to predict the state of the system at the moment 𝑡 would make no sense. 116 

Moreover, the algorithm 𝒜, which the theoretician uses for solving exactly 117 

Schrödinger’s equation, would be similarly useless for the purpose of prediction even if 118 

the algorithm’s worst-case running time 𝑇(𝑁) were equal to the time of observation 𝑡. 119 

 120 

It follows then that the quantum deterministic principle will be valid in the real world 121 

only if the running time 𝑇(𝑁) of the algorithm 𝒜 meets the condition 122 

 123 

0 < 𝑇(𝑁) < 𝑡    as 𝑁 → ∞    . (7) 

 124 

So, the question naturally arises: Can the quantum deterministic principle (5) be 125 

achievable for all physical systems? In other words, what is the limit, if any, to quantum 126 

determinism? 127 

 128 

The answer to this question may play the crucial role in dissolving the black hole 129 

information loss paradox. This paradox results from the breakdown of unitarity implied 130 

by information loss within a black hole. 131 

 132 

Imagine a macroscopic system in a pure quantum state that is thrown into a black hole. 133 

According to Hawking, the black hole evaporates due to thermal radiation [1, 2]. 134 

Suppose that the black hole continues to evaporate until it disappears completely. As 135 

the detailed form of Hawking’s radiation does not depend on the detailed structure of 136 

the macroscopic system that collapsed into it, we just found a process that converts a 137 

pure state into a mixed state [3, 4, 5, 6]. However, it is clear that transforming a pure 138 

quantum state into a mixed state, one must throw away information. Thus, as it turns 139 

out the black hole apparently performs a non-unitary transformation on the state of the 140 

falling macroscopic system [7, 8, 9]. 141 

 142 

As it is understood now, such a paradox is to a large extent independent from a 143 

quantum treatment of the space–time degrees of freedom, i.e. a quantum theory of 144 

gravity but depends crucially on assuming a limitless feasibility of the quantum 145 

deterministic principle [10, 11]. Indeed, if one were willing to drop unitarity then 146 

information loss would be no longer problematic [12]. Therefore, by demonstrating that 147 

quantum determinism cannot be realizable for macroscopic systems, the black hole 148 

information loss paradox might be resolved. 149 



 150 

The present paper will attack the principle of quantum determinism to demonstrate 151 

that this principle formulated in the form of the linear mapping (5) is incapable of being 152 

used generally, i.e., for randomly selected physical systems, especially macroscopic 153 

systems. 154 

 155 

 156 

2. Applying the quantum deterministic principle to an adiabatic system 157 

 158 

Suppose that in the experiment conducted by the experimenter and theoretician, the 159 

observed physical system ℳ evolves slowly from the known prepared ground state 160 

|Ψ(𝑡init)⟩ of the initial Hamiltonian 𝐻init to the ground state |Ψ(𝑡final)⟩ of another 161 

Hamiltonian 𝐻final (not commuting with 𝐻init) that encodes the solution to some 162 

computationally hard problem. 163 

 164 

Say, this computational problem is NP-complete (such as the 3SAT problem, the 165 

travelling salesman problem, or any other “famous” NP-complete problem discussed in 166 

[13]). This means that all NP problems (i.e., decision problems with only yes-no answers 167 

whose “yes” solutions can be verified in polynomial time) are polynomial-time reducible 168 

to this problem. Therefore, finding an efficient algorithm for the given NP-complete 169 

problem implies that an efficient algorithm can be found for all NP problems, since any 170 

problem belonging to the class NP can be recast into any other member of this class (a 171 

brief introduction to the classical theory of computational complexity can be found in 172 

[14, 15]). 173 

 174 

To the end that the final Hamiltonian 𝐻final may encode a NP-complete problem, the 175 

evolution of the system ℳ should take place over the parameter 𝑠 =176 

(𝑡 − 𝑡init) (𝑡final − 𝑡init)⁄ ∈ {0,1} as 𝐻(𝑠) = (1 − 𝑠)𝐻init + 𝑠𝐻final, where 𝐻final is the 177 

quantum version of the Hamiltonian function 𝐻(𝜎1, … , 𝜎𝑁) describing the energy of 178 

configuration of a set of 𝑁 spins 𝜎𝑖 ∈ {−1,+1} in the classical Ising model [16, 17] 179 

 180 

𝐻(𝜎1, … , 𝜎𝑁) = −∑𝐶𝑖𝑗𝜎𝑖𝜎𝑗
𝑖<𝑗

− 𝐴∑𝐵𝑖𝜎𝑖

𝑁

𝑖

    (𝐴, 𝐵𝑖, 𝐶𝑖𝑗 = const)    .  (8) 

 181 

One of the computational problems associated with (8) is to find the ground state 182 

energy of the Hamiltonian function 𝐻(𝜎1, … , 𝜎𝑁). Such a function problem can be easily 183 

turned into the decision problem: Given the particular choice of the constants 𝐴, 𝐵𝑖 and 184 

𝐶𝑖𝑗, does the ground state of 𝐻(𝜎1, … , 𝜎𝑁) have zero energy? Because this decision 185 

problem is known to be NP-complete [18, 19], there exists a polynomial time mapping 186 



from this problem to any other NP-complete problem. But then the fact that some other 187 

decision problem is NP-complete would mean that it is possible to find a mapping from 188 

that problem to the decision problem of the Ising model (8) with only a polynomial 189 

number of spins 𝜎𝑖 (see for detail the paper [20] demonstrating that in each case, the 190 

required number of spins would be at most cubic in the size of the problem). 191 

Consequently, any given NP-complete problem can be written down as the Ising model 192 

(8). 193 

 194 

Let the time interval 𝑡final − 𝑡init be long enough to ensure that the probability of finding 195 

the system ℳ in the ground state of the final Hamiltonian 𝐻(1) = 𝐻final at the end of 196 

evolution (i.e., at the time 𝑡final) would be close to one. Consider the final Hamiltonian 197 

𝐻final = 𝐻(𝜎1
𝑧, … , 𝜎𝑁

𝑧), in which spins 𝜎𝑖 of the classical Hamiltonian (8) have been 198 

replaced by Pauli spin-1/2 matrices 𝜎𝑖
𝑧. If the resultant quantum Hamiltonian has the 199 

zero energy ground state 𝐻(𝜎1
𝑧, … , 𝜎𝑁

𝑧)|Ψ(𝑡final)⟩ = 0, it would mean that there is a 200 

solution to the NP-complete problem encoded in the particular Ising model (8). 201 

 202 

Thus, the application of the quantum deterministic principle to the described quantum 203 

system ℳ demands that the amount of time 𝑇(𝑁) taken by the theoretician in order to 204 

predict whether a NP-complete problem encoded in 𝐻(1) would have a solution must 205 

be less than the evolution time 𝑇adiabatic = 𝑡final − 𝑡init of the observed quantum 206 

adiabatic algorithm 207 

 208 

𝑇(𝑁) < 𝑇adiabatic   as 𝑁 → ∞    . (9) 

 209 

Let us assess whether such a condition can be always fulfilled. 210 

 211 

Though the exact running time 𝑇adiabatic of the adiabatic computation is unknown (it 212 

depends on the minimum gap 𝑔 = 𝐸1(𝑠) − 𝐸0(𝑠) between the two lowest levels 𝐸1(𝑠) 213 

and 𝐸0(𝑠) of the Hamiltonian 𝐻(𝑠) and on its scaling with 𝑁 [21]), there is evidence [22, 214 

23] that the quantum adiabatic algorithm takes exponential time in the worst-case for 215 

NP-complete problems. 216 

 217 

Therefore, let us assume that the evolution time 𝑇adiabatic coincides with the maximal 218 

amount of time required to trivially solve the NP-complete problem encoded in 𝐻(𝑁, 1). 219 

 220 

Evidently, to assure the fulfillment of the quantum deterministic principle in that case, 221 

the algorithm 𝒜, which the theoretician uses for exactly solving Schrödinger’s equation 222 

(i.e., for finding Ψ(𝑡final)), must be faster than the trivial algorithm. Therefore, the 223 

question becomes, does there exist an exact algorithm 𝒜 that can solve the given NP-224 

complete problem faster than brute force? 225 



 226 

Here, the trouble is that the answer to this question remains unknown: While many NP-227 

complete problems admit algorithms that are much faster than trivial ones, for other 228 

problems such as 𝑘-CNF-SAT, 𝑑-Hitting Set, or the set splitting problem, no algorithms 229 

faster than brute force have been discovered yet (see [24, 25, 26] for detail information 230 

on exact algorithms for NP-complete problems). Such a situation caused to formalize the 231 

hypothesis called the Strong Exponential Time Hypothesis, SETH, which conjectures 232 

that certain known brute-force algorithms for solving NP-complete problems are 233 

already optimal. More specifically, SETH states that for all 𝛿 < 1 there is a value 𝑘 (the 234 

maximum clause length) such that the 𝑘-CNF-SAT problem cannot be solved in 𝑂(2𝛿𝑁) 235 

time [27, 28, 29, 30]. 236 

 237 

Despite the fact that there is no universal consensus about accepting SETH (compared, 238 

to say, accepting the PNP conjecture), SETH has a special consequence for the quantum 239 

deterministic principle. 240 

 241 

Indeed, suppose the NP-complete problem encoded in 𝐻(𝑁, 1) is the 3-CNF-SAT 242 

problem (i.e., a satisfiability problem written as a 3SAT problem in conjunctive normal 243 

form). If the strong exponential time hypothesis were true, then this problem could not 244 

be exactly solved in time less than the trivial algorithm’s running time 𝑂(2𝑁). Thus, if 245 

𝑇adiabatic = 𝑂(2𝑁) then it would necessitate that 𝑇(𝑁) ≮ 𝑇adiabatic, meaning that the 246 

quantum deterministic principle could not be fulfilled. 247 

 248 

As follows, assuming SETH, quantum determinism cannot be a general principle 249 

applicable to all conceivable instances of the quantum adiabatic system ℳ described 250 

above. 251 

 252 

 253 

3. Macroscopic quantum determinism 254 

 255 

Let an ordinary macroscopic system (i.e., a system of Newtonian physics – the physics of 256 

everyday life) be characterized by the Schrödinger Hamiltonian 𝐻(𝑁𝑀), where 𝑁𝑀 257 

stands for the number of constituent microscopic particles of such a system. It is safe to 258 

assume that 𝑁𝑀 has the order of magnitude, at least, the same as Avogadro’ number 259 

𝑁𝐴~10
24. 260 

 261 

Since the ordinary macroscopic system has an enormous number of microscopic 262 

degrees of freedom, the Hamiltonian 𝐻(𝑁𝑀) should be complex enough to be presented 263 

as a sum of 𝑆 non-overlapping and non-empty terms 𝐻𝑖(𝑁𝑖) 264 

 265 



𝐻(𝑁𝑀) =∑𝐻𝑖(𝑁𝑖)

𝑆

𝑖=1

= 𝐻𝑆′ + 𝐻𝑆′′ :    𝑁𝑖 ≤ 𝑁𝑀      (10) 

 266 

such that at least some 𝑆′ ≤ 𝑆 of those terms 𝐻𝑖(𝑁𝑖) would be able to encode 267 

computational NP-complete problems (similar to the Hamiltonian function (8) of the 268 

classical Ising model): 269 

 270 

𝐻𝑘(𝑁𝑘) ≤
𝑃 𝑋𝑘(𝑁𝑘):    𝑘 ∈ {1,… , 𝑆′}    , (11) 

 271 

where the expression (11) denotes a polynomial time reduction from a NP-complete 272 

problem 𝑋𝑘(𝑁𝑘) of size 𝑁𝑘 to a Hamiltonian term 𝐻𝑘(𝑁𝑘). This way, predicting the 273 

quantum state |Ψ𝑀(𝑡)⟩ of the macroscopic system would require solving the set of NP-274 

complete problems 𝑋 = {𝑋𝑘(𝑁𝑘)}𝑘
𝑆′  encoded in the Hamiltonian 𝐻𝑆′ . 275 

 276 

Unlike degrees of freedom of a microsystem, which can be controlled by the 277 

experimenter, the microscopic degrees of freedom of a macroscopic system are mostly 278 

out of control. This means that the precise identification of microscopic degrees of 279 

freedom governing a macroscopic system’s evolution would be impossible. One can 280 

infer from here that it is impossible to know with certainty what particular problems 281 

𝑋𝑘(𝑁𝑘) are enclosed in the set 𝑋. Next it follows that only a generic exact algorithm 𝒜 282 

solving any NP-complete problem would be able to guarantee (even if in principle) the 283 

prediction of the exact quantum state |Ψ𝑀(𝑡)⟩ of a macroscopic system. 284 

 285 

But then again, if SETH held true, there would be no generic exact sub-exponential time 286 

algorithm capable of solving all NP-complete problems in sub-exponential or quasi-287 

polynomial time. Consequently in the worst case, when predicting the exact quantum 288 

state |Ψ𝑀(𝑡)⟩, the algorithm 𝒜 could converge only in an exponential (or perhaps even 289 

larger) amount of time 𝑇𝑗(𝑁𝑗): 290 

 291 

𝑇𝑗(𝑁𝑗) = max{𝑇𝑘(𝑁𝑘)}𝑘
𝑆′ :    𝑗 ∈ {1, … , 𝑆′}    , (12) 

 292 

where 𝑁𝑗  is likely to have the same scale as 𝑁𝑀. 293 

 294 

Thus, assuming SETH, the principle of quantum determinism would be incapable of 295 

being implemented for an arbitrary macroscopic system since it is impossible for an 296 

exponential (or faster growing function) 𝑇𝑗(𝑁𝑗) of a value 𝑁𝑗 , which has a good chance of 297 

being of the same size as Avogadro’ number, to meet the condition 𝑇𝑗(𝑁𝑗) < 𝑡 at any 298 

reasonable time 𝑡. 299 



 300 

In other words, even if the initial quantum state |Ψ𝑀(0)⟩ of the ordinary macroscopic 301 

system were precisely known, as long as SETH is true it would be impossible to predict 302 

the system’s exact final quantum state |Ψ𝑀(𝑡)⟩ in the realm of actual experience. 303 

 304 

 305 

4. The loss of the information about the initial quantum state by a macroscopic 306 

system 307 

 308 

To be sure, even if SETH held true, a trivial (brute force) way of solving Schrödinger’s 309 

equation might be nonetheless feasible. Besides the obvious case of a system composed 310 

of a few constituent particles completely isolated from the environment, this can be true 311 

if there exists a system-specific heuristic that can be used to drastically reduce the 312 

system’s set of all possible candidates for the witness. 313 

 314 

Suppose a macroscopic system ℳ to be formally divided into a collective system 𝒞 315 

represented by a small set of the system’s collective (macroscopic) observables (along 316 

with their conjugate partners) correspond to properties of the macroscopic system ℳ 317 

as a whole and the environment ℰ, which is the set of the system’s observables other 318 

than the collective ones. 319 

 320 

It was already noted that the microscopic degrees of freedom of an ordinary 321 

macroscopic system are uncontrolled for the most part. It means that one cannot hope 322 

to keep track of all the degrees of freedom of the environment ℰ. Such an inference may 323 

be used as a heuristic allowing an enormous set of all possible candidate solutions for 324 

ℳ to be reduced to just a small set comprising only candidate solutions for 𝒞. Upon 325 

applying this heuristic by way of “tracing out” the degrees of freedom of the 326 

environment ℰ and assuming that the environmental quantum states |ϵ𝑛(𝑡)⟩ are 327 

orthogonal (or rapidly approach orthogonality), that is, ⟨|ϵ𝑚(𝑡)||ϵ𝑛(𝑡)⟩ → 𝛿𝑚𝑛, one would 328 

get an inexact yet practicable solution to Schrödinger’s equation approximately 329 

identical to the corresponding mixed-state density matrix of the system 𝒞 describing the 330 

possible outcomes of the macroscopic observables of the system ℳ and their 331 

probability distribution. 332 

 333 

As it can be readily seen, the above-described heuristic represents a non-unitary 334 

transformation of a pure quantum state into a mixed state (i.e., a probabilistic mixture 335 

of pure states) that can be written down as the mapping 𝒜 336 

 337 

𝒜:    𝜌𝐶(𝑡) =∑|𝜙𝑛(𝑡)⟩𝑐𝑛𝑐𝑛
∗⟨𝜙𝑛(𝑡)|

𝑛

 
𝑇(𝑁𝐶)<𝑡
←      |𝜙𝐶(0)⟩ =∑𝑐𝑛|𝜙𝑛(0)⟩

𝑛

    , (13) 



 338 

where the vector |𝜙
𝐶
(0)⟩ and the density operator 𝜌𝐶(𝑡) describe the initial state and 339 

the final state of the collective system 𝒞, correspondingly; 𝑁𝐶  stands for the cardinality 340 

of the set of all possible candidates for the witness of the system 𝒞. 341 

 342 

The loss of information depicted in the mapping (13) is especially noteworthy since it 343 

cannot be regained. Indeed, to recover the information about phase correlation between 344 

different terms in the initial superposition |𝜙𝐶(0)⟩ = ∑ 𝑐𝑛|𝜙𝑛
(0)⟩𝑛  lost from the collective 345 

system 𝒞 to the environment ℰ, one has to compute the exact total quantum state 346 

|Ψ(𝑡)⟩ = ∑ 𝑐𝑛|𝜙𝑛(𝑡)⟩𝑛 |ϵ𝑛(𝑡)⟩, i.e., to exactly solve the Schrödinger equation for the 347 

macroscopic system ℳ. But unless SETH falls, solving exactly this equation for an 348 

arbitrary macroscopic system can be done only in an exponential, as a minimum, 349 

amount of time 𝑇(𝑁𝑀). Therefore – in view of the implausible complexity-theoretic 350 

consequences, which the fall of SETH would have for several NP-complete problems 351 

[31] – it is highly unlikely that for an ordinary macroscopic system the loss of the 352 

information about the initial quantum state might be recovered in any reasonable time. 353 

 354 

 355 

5. Concluding remarks 356 

 357 

As it follows from the above discussion, the limit to quantum determinism and the 358 

strong exponential time hypothesis stay and fall together: If SETH holds, then quantum 359 

determinism has a limit since it cannot be a general principle feasibly applicable to any 360 

physical system (or to any instance of every physical system). Conversely, if quantum 361 

determinism were such a general principle, then SETH could not be valid since for each 362 

NP-complete problem there would exist an exact algorithm capable of solving this 363 

problem faster than brute force. 364 

 365 

Along these lines, the breakdown of the quantum deterministic principle in a process, in 366 

which a black hole forms and then completely evaporates, can actually be physical 367 

evidence that supports the strong exponential time hypothesis (and thus the PNP 368 

conjecture). 369 

 370 

 371 
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