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Abstract

In this paper, we investigate the influence of &ecteic field on the ground state energy of a
polaron in a spherical semiconductor quantum ddd)(Qsing the modified Lee Low Pines
(LLP) method. The numerical results show an inaeakthe ground state energy with the
increase of the electric field and the confinemengths. The modulation of the electric and the
confinement lengths enables the control of the de@nce of the system. It is also seen that the
temperature is a decreasing function of the elaghttonon coupling constant and the

longitudinal confinement length, whereas it incessawith the electric field strength.
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1- Introduction

Due to the recent progress achieved in nanotecpoibhas become possible to fabricate low
dimensional semiconductor structures. Special asteis being devoted to the quasi zero
dimensional structures, usually referred to as twmardots (QD) [1-9]. In such nanometer QDs,
some novel physical phenomena and potential eldctrevice applications have generated a
great deal of interest. A great challenge has teesn laid on theoretical physicists, that of
developing the theory based on the quantum mechlar@gime. Recently, much effort [10-12]
has been focused on exploring the polaron effed@D&. Roussignol edl. [10] have shown
experimentally and explained theoretically thatphenon broadening is very significant in very
small semiconductor QD's. It has also been obsefi#dl 2] that the polaron effect is more
important if the dot sizes are reduced to a fewonagters. More recently, the related problem of
an optical polaron bound to a Coulomb impurity irQ® has also been considered in the
presence of a magnetic field.

The theoretical investigation of the polaron prdéieer has been performed using standard
perturbation techniques [13], the variational LemwvtPines method [14-15] the modified LLP
approach [16-17], the Feynman path integral mefi&}i, numerical diagonalization [19], and
Green’s function methods [20]. The experimentaladgtl] showed, in particular, a large
splitting width near the one-phonon and two-phonesonance in a InAs/GaAs QD. This was
accounted for by the theoretical model via a nuca¢diagonalization of the Frohlich interaction
[19]. The required value of the Frohlich constaasvnuch larger (by a factor of two [19]), than
that measured in bulk. In [18] using the Feynmaih pategral method, the authors observed that
the quadratic dependence of the magnetopolaromgiemodulated by a logarithmic function
and strongly depends on the Frohlich electron—phooaupling constant structure and the
cyclotron radius. Furthermore, the effective el@atphonon coupling is enhanced by high
confinement or a strong magnetic field. In [21] tfidaron energy in a QD was calculated using
a LLP approach and it was found that the polarafiect is more pronounced for small dot
sizes. In [16], using a modified LLP approach, thenber of phonons around the electrand

the size of the polaron for the ground state, amdlife first two excited states is calculated via
the adiabatic approach.

It is important to note that the modified LLP mathhas not been used in any of the
aforementioned works to solve the problem of a qppolasubjected to an electric field. It is also
instructive from the works presented above, tolkd¢lat polarons are often classified according
to the Frohlich electron-phonon coupling const@gicause it recovers simultaneously all types
of coupling which characterize the Frohlich elentphonon coupling, the Feynman path integral
method [19] has been seen as one of the best. @irefeature of the method presented here is
the modification of the LLP approach [17] by intumihg new parameters, and b, in the

traditional LLP approach, which permits us to abtan “all coupling” polaron theory. Here the
coupling is weak ib, =b, - 1, strongifb, =b, - 0 and intermediate between these ranges.



In this work, we study the influence of the electiield on the polaron ground state energy. It
has the following structure: In section two, we s the Hamiltonian of the system while in

section 3, the modified LLP method is presented thiedanalytical results of the ground state
energy and the polaron’s effective mass are oldailmesection 4, the temperature effect on the
average number of bulk LO phonons is evaluatedrdoog to the quantum statistics theory. In

section 5, wdresent numerical results and discussions. Se6tismievoted to the conclusion.

2- Hamiltonian of the system

The motion of the electron under considerationaldng place in a polar crystal with a three
dimensional anisotropic harmonic potential, anénatting with the bulk LO phonongnder the
influence of an electric field along the — direction. The Hamiltonian of the electron-phonon

interaction system can be written as [22]

H=H,+H, +3 V,|a,e” +aje™| 1p.
Q
whereH ; represents the electronic Hamiltonian and is glwen
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where p is the momentum while,, and «, measure the confinement in the— direction

andz - direction respectively.

H oh is the phonon Hamiltonian defined as
H o = gaSaQ (2.3)

Where aS(aQ) are the creation (annihilation) operators for p@onons of wave vector

Q =(9,d;),

Voand a  are the amplitude of the electron-phonon inteyacand the coupling constant

respectively given by
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3- Modified LLP method and analytical results of the ground state energy
of the polaron

Adopting the mixed-coupling approximation of [28]e propose a modification to the first Lee-
Low-Pines (LLP)-transformation by inserting two fedional parameters, and b, .

Our new unitary transformation is now

U, =exdi|(P, - P,) b, + (P, - P,)2b, | (3.1)

With

P=p+ ZaSaQ (3.2)
Q

being the total momentum of the polaron and

P= ZQaSaQ (3.3)
Q

the momentum of the phonon.

The two new variational parameters are supposéchde the problem from the strong coupling

case to the weak coupling limit and to interpolag@éveen all possible geometries.

The second transformation is of the form [1]

U, =3 uq (a5 -2,) (3.9)
Q

WhereuQ is a variational function. This transformationcedled the displaced oscillator which

is related to the phonon operators via the phonavewector by the relation



¢ph = UZ‘Oph> (35)

where ‘Oph> is the phonon vacuum state since at low temp@stthere will be no effective

phonons.

Applying the transformation in (3.1) on the Hamiltan (2.1), we obtain

H® =UHUY,
—p—2+1mafp2+lmafzz—e*Fp+bf(P -P))*+
2m 2 2 7 oo

+2bp, (P, = F,) +b; (P, = P,)* +20,p,(P, - P,) +
Y asa, + 3V, [aQe—i(blq.mbzqzz)eio.r +age oo grer ]
Q Q

(3.6)

Applying the transformation (3.4) on (3.6), and eegsing in Frohlich units i.e.
2m=w ~ =h =1, we obtain the ground state energy
£, =(0,|p* +%a,fp2 +:11w§z2 ~€'Fpl0,) +b2P? —2b7P, P9 +b2(POY +

+ Y u2(1+b2g? +b2g?)+(0,[(0,,|20,p, (P, - £, +PY - P)0,, ) 0, ) + (3.7)

+ Z::quQme (exd-i(b,a.0+b,a,2)]expiQr) - exdi(b.a.0 + b,a,z)| exp(-iQr)) 0,) +

z
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where

P =3 Qi ) @9
Q

And

PO=Y qu? (3.9)
Q

To evaluate this expression, we introduce the tireenbination operators of the position and

momentum of the electron by the following relation:
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Where the index¥ refers to theX and Y directions, 4, and 4, are variational parameters,
and O and o are respectively the annihilation and creationratmes for the electron. Using

the following commutator,[xyvpu] =1i1d,, and performing the required calculations, we may
write the ground state energy as:
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With
S =(0.|exd+i(ba.0 +b,a,z)]expxiQr)0,) (3.12)

this expression can be written as
) q2 ) q2
S = exr{—(l—bl) 5} exr{— (1-b,) 5} (3.13)
1 2

Minimizing (3.11) with respect to the variationakhiction uQ we obtain

|1+ bZa? + b2q? + 20%q(P O P, )+ 2b2q, (P O- P, Ju, =V, S, (3.14)

Solving (3.14) with respect ta,, with the assumption thap ©) differs from the total

Q 1

momentum by a scalar factq(P ©)= /7P), we get



uQ = 2.2 2.2 2VQSQ 2 (3'15)
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Substituting (3.15) into (3.11) we obtain
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But g, (P) may be well represented by the first two terma pbwer series expansion M7 as

in [23]
e,(P)=¢,(0)+ ,8%2+O(P4)+... (3.17)

where g1 gives the effective mass of the polaron. Compaf@6) and (3.17) we obtain for

the ground state energy
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Substituting (3.13) in the ground state energ¥§B.we obtain
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and re-arranging this expression, we finally obtAeground state energy
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where |, = f andl f are the confinement length ix —y —plane andz -

direction respectlvely

4- Temperature Effect
The polaron is no longer considered to be in theugd state when it is at a non-zero

temperature. The properties of the polaron are ttestribed by the statistical average of the
phonon number. The average number of bulk LO phen@given according to the quantum

statistics theory as

el

(4.1)

whereK g is the Boltzmann constant afds the temperature of the system.

5- Numerical results and discussions

For the numerical results, we consider the wealpliog case, i.eb1 =b, =1.1In this part,

we show the numerical results of the ground statrgy versus the electron-phonon coupling
strength, the cyclotron frequency and the confimgnhengths with the following polaron units:

R = hay 5 and ry = (h/Zm* q_o)l/z
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Figure 1: Ground state energy asa function of the electric fiel#, for
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Figure 2: Ground state energy as a function of the electron-phonon coupling tamsa for

(@F =2.5and |

1

=0.25 ;(b)F =10.0and |

2

=0.45 ;(C)I1 =0.25 and |

5 =0.75



14 14 14
— —1,=0.35,1,=0.15,F=10 — —1,=0.25,1,=0.35,F=10 — —1,=0.25,1,=0.35.F=5

—1,=0.35,1,=0.95,F=10 I 13 —1,=0.75,1,=0.35,F=10 I —1,=0.25,1,=0.35, F=10 ||

13

12

Figure 3: Temperature as a function of the eleefrloonon coupling constamt for

(a)F =10.0 and I, =0.35 ;(b)F =10.0 and l, =0.35 ;(C)I1 =0.25 and |, =0.35

In figure 1, we have plotted the ground state enesg of the polaron as a function of the
electric field, F for ¢« =6.5,1, =0.15,1, =0.35 and I, =0.75 (figure (1a)) and
a=6.51 =025,, =0.35and |, =0.75 (figure (1b)). The ground state energy is an

increasing function of the electric field. Thishecause the electric field brings about an increase
in the electron energy and makes the electronsteyact with more phonons. This is a novel
approach to controlling the QD energies via thetelefield. In fact, the electric field plays an
important role in low-dimensional materials. Forample, it affects both the quantum
decoherence process and the electron’s probabiétsity are affected. Thus, here we find a
suitable two-state system by adjusting the eledieid, which is crucial in constructing a qubit
[24-26].

In figure 2, we have plotted the ground state enegas a function of the electron-phonon
coupling constanr for(a) F =2.5and I, =0.25 ;(b)F =10.0and |, =0.45 ; (C)
I, =0.25 and 1, =0.75 . These figures show that the ground state enexggases with the

electron-phonon coupling constant and decreasésaniincrease in the confinement length.

With the increase of the harmonic potenfaf™ %: ), the energy of the electron and the
interaction between the electron and the phonohghwtake phonons as the medium, are
enhanced because of the smaller particle motiogerahhe larger the electron-phonon coupling
constant, the stronger the ground state enerdyegbolaron. This result is similar to that
obtained in [27-28].

In figure 3, we have plotted the Temperature amatfon of the electron-phonon coupling
constanta for (&) F =10.0and |, =0.35 ;(b) F =10.0and I, =0.35 ;(c)

l;, =0.25and |, =0.35



In the weak coupling range, the temperature is @edsing function of the electron-phonon
coupling constant and a decreasing function ofcihrfinement length strength as well. When
the electron motion range decreases, the energyerfiction increases. As such, the motion of
electrons and phonons heats up the medium. Theetatope is an increasing function of the
electric field strength; this is because the eledteld is an external perturbation source which
accelerates the motion of particles (electron amdnpns) in the QD. The mesoscopic
phenomena have gained more importance as a basievfel electronic and optical devices. It is
necessary to formulate models that describe physieenomena associated with Nano crystals.
This study is in accordance with this philosophlgefiefore, from our study and results, it is clear
that the coupling between the electron and the pharan explain properties of novel electric
and optical devices. Temperature effect and thdicgtipn of the electric field enhance the
polaron ground state energy and the polaron temds highly localized state. This gives the
possibility for the most favorable condition for atable bipolaron and bipolaron
superconductivity [29-34].The result is in in accmde with that obtained by Jing-Lin Xiao[35-
36]

6- Conclusion

With the use of the modified LLP method, we havelsd the energy levels of a weak coupling
polaron in a spherical quantum dot (QD) and a weakpling polaron in an anisotropic QD
subjected to an electric field. It is found thae tground state energy of the polaron is an
increasing function of the electric field; thishecause the presence of the electric field makes
phonons to interact more with the electrons. lalso seen that, with a good control of the
confinement length and the electron coupling cornistae can control the decoherence of the
system. The enhancement of the coupling strengtheig important in the construction of
guantum computers since it leads to the conservaifoits internal properties such as the
superposition states against the influence ofntdrenment, which can induce the construction
of coherent states and cause coherence quenchiegemperature is an increasing function of
the electric field and a decreasing function ofabefinement lengths
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