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ABSTRACT  9 

 

Bianchi type-IX space-time is considered in the framework of the )(Rf  theory of gravity 

when the source of the energy momentum tensor is a perfect fluid. The cosmological model 

is obtained by using the condition that the expansion scalar (θ ) is proportional to the shear 

scalar (σ ). The physical and geometrical properties of the model are also discussed.  
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1. INTRODUCTION  13 

 14 

Cosmological observations in the late 1990’s from different sources such as the 15 

Cosmic Microwave Background Radiation (CMBR) and supernova (SN Ia) surveys indicate 16 

that the universe consist of 4% ordinary matter, 20% dark matter (DM) and 76% dark energy 17 

(DE) [1-4]. The DE has large negative pressure while the pressure of DM is negligible. Wald 18 

[5] has distinguished DM and DE and clarified that ordinary matter and DM satisfy the strong 19 

energy conditions, whereas DE does not. The DE resembles with a cosmological constant 20 

and the self-interaction potential of scalar fields. The scalar field is provided by the 21 

dynamically changing DE including quintessence, k-essence, tachyon, phantom, ghost 22 

condensate and quintom etc. The study of high redshift supernova experiments [6-8], CMBR 23 

[9-10], large scale structure [11] and recent evidences from observational data [12-14] 24 

suggest that the universe is not only expanding but also accelerating. 25 

There are two major approaches to the problem of accelerating expansion. One is to 26 

introduce a DE component in the universe and study its effects. The alternative is to modify 27 



general relativity; this is termed as modified gravity approach. We are interested in second 28 

approach. After the introduction of General Relativity (GR) in 1915, questions related to its 29 

limitations were in discussion. Einstein pointed out that Mach’s principle is not substantiated 30 

by general relativity. Several attempts have been made to generalize the general theory of 31 

gravitation by incorporating Mach’s principle and other desired features which were lacking 32 

in the original theory. Alternatives to Einstein’s theory of gravitation have been proposed 33 

incorporating certain desirable features in the general theory. In recent decades, as an 34 

alternative to general relativity, scalar tensor theories and modified theories of gravitation 35 

have been proposed. The most popular amongst them include the theories of Brans-Dicke 36 

[15], Nordtvedt [16], Sen [17], Sen and Dunn [18], Wagonar [19], Saez-Ballester [20] etc. 37 

Recently, )(Rf  gravity and ),( TRf  gravity theories have gained importance amongst the 38 

modified theories of gravity because these theories are supposed to provide natural 39 

gravitational alternatives to dark energy. Among the various modifications, the )(Rf  theory 40 

of gravity is treated most suitable due to cosmologically important )(Rf  models. In )(Rf  41 

gravity, the Lagrangian density f  is an arbitrary function of R [15, 21-23]. The model with 42 

)(Rf  gravity can lead to the accelerated expansion of the universe. A generalization of 43 

)(Rf  modified theory of gravity was proposed by Takahashi and Soda [24] by including 44 

explicit coupling of an arbitrary function of the Ricci scalar R  with the matter Lagrangian 45 

density mL . There are two formalisms to deriving field equations from the action in )(Rf  46 

gravity. The first is the standard metric formalism in which the field equations are derived by 47 

the variation of the action with respect to the metric tensor µνg . The second is the Palatini 48 

formalism. Maeda [25] have investigated Palatini formulation of the non-minimal geometry-49 

coupling models. Multamaki and Vilja [26] obtained spherically symmetric solutions of 50 

modified field equations in )(Rf  theory of gravity. Akbar and Cai [27] studied )(Rf  theory 51 

of gravity action as a nonlinear function of the curvature scalar R . Nojiri and Odinstove [28-52 

30] derived the result that a unification of the early time inflation and late time acceleration is 53 

allowed in )(Rf  theory. Ananda, Carloni and Dunsby [31] studied structure growth in )(Rf  54 

theory with a dust equation of state. Sharif and Shamir [32] and Sharif [33] have studied the 55 

vacuum solutions of Bianchi type-I, V and VI space-times. Sharif and Shamir [34] and Sharif 56 

and Kausar [35] obtained the non-vacuum solutions of Bianchi type-I, III and V space-times 57 

in )(Rf  theory of gravity. Adhav [36, 37] have investigated the Kantowski-Sachs string 58 

cosmological model and the Bianchi type-III cosmological model with a perfect fluid in )(Rf  59 

gravity. Singh and Singh [38] have obtained functional form of )(Rf  with power-law 60 



expansion in Bianchi type-I space-times. Recently Jawad and Chattopadhyay [39] have 61 

investigated new holographic dark energy in )(Rf  Horava Lifshitz gravity. Rahman et al. 62 

[40] have obtained non-commutative wormholes in )(Rf  gravity with Lorentzian distribution. 63 

Motivated by the above investigations, in this paper an attempt is made to study 64 

Bianchi type-IX space-time when the universe is filled with a perfect fluid in the )(Rf  theory 65 

of gravity with standard metric formalism. Bianchi type-IX space-time is of vital importance in 66 

describing cosmological models during the early stages of evolution of the universe. This 67 

work is organized as follows: In Section 2, the )(Rf  gravity formalism is introduced. In 68 

Section 3, the model and field equations are presented. The field equations are solved in 69 

Section 4. The physical and geometrical behavior of the model is discussed in Section 5. 70 

Section 6 contains concluding remarks. 71 

 72 

2. )(Rf  GRAVITY FORMALISM: 73 

 74 

The action of )(Rf  gravity is given by 75 

∫ 
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Here )(Rf  is a general function of the Ricci scalar R  and mL  is the matter Lagrangian. 77 

The corresponding field equations of )(Rf  gravity are found by varying the action with 78 

respect to the metric µνg : 79 
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µ∇∇≡ , µ∇  is the covariant derivative and µνT  is the standard 81 

matter energy-momentum tensor derived from the Lagrangian mL .  82 

Taking the trace of the above equation (with 1=k ), we obtain 83 
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On simplification, equation (3) leads to 85 
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3. METRIC AND FIELD EQUATIONS: 88 

 89 

Bianchi type-IX metric is considered in the form, 90 

( ) ydxdzadzyaybdybdxadtds cos2cossin 222222222222 −++++−= ,              (5) 91 

where ba,  are scale factors and are functions of cosmic time t . 92 

The Ricci scalar for Bianchi type-IX model is given by 93 
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The energy momentum tensor for the perfect fluid is given by 95 

 jijiji pguupT −+= )(ρ ,        (7) 96 

satisfying the barotropic equation of state 97 

 ργ=p , 10 ≤≤ γ ,        (8) 98 

where ρ  is the energy density and p  is the pressure of the fluid. 99 

In co-moving coordinates 100 
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With the help of equations (7) to (9), the field equations (2) for the metric (5) are found 102 
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where the overdot )( . denotes the differentiation with respect to t. 106 

 107 

4. SOLUTIONS OF FIELD EQUATIONS: 108 

 109 

The field equations (10) to (12) are highly non-linear differential equations in five 110 

unknowns Fpba ,,,, ρ . Hence to obtain a well determined solution of the system, we 111 

assume that the square of the expansion scalar (θ ) is proportional to the shear scalar ( 2σ ) 112 

[41], which leads to  113 

mba = , )1( ≠m ,                   (13) 114 



where m  is proportionality constant. 115 

Also the power law relation between the scale factor )(A  and scalar field ( F ) [37, 42-43] 116 

has been given by  117 

nAF α ,                   (14) 118 

where n  is an arbitrary constant and A  is the average scale factor. 119 

For the metric (5), the average scale factor A is 120 

3

1
2 )(abA = .                   (15) 121 

Equation (14) leads to 122 

nAKF = ,                   (16) 123 

where K  is a proportionality constant. 124 

With the help of equations (13) and (15), equation (16) reduces to 125 
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Subtracting equation (10) from (11) and (12) respectively and dividing the result by F gives 127 
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Subtracting equation (19) from equation (18) yields 130 
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With the help of equations (13) and (17), equation (20) leads to 132 
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Multiplying equation (21) by b2  134 
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With the help of equation (23), equation (22) reduces to 138 
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This is linear differential equation of order one. 140 

Integrating equation (24) with respect to b  141 
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Taking square root 143 
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Using equations (13) and (26), metric (5) reduces to 145 
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Using the new coordinate Tb = , equation (27) leads to 147 
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 149 

5. SOME PHYSICAL PROPERTIES OF THE MODEL: 150 

 151 

The physical quantities such as the spatial volume V , Hubble parameter H , expansion 152 

scalar θ , mean anisotropy parameter mA , shear scalar 2σ , energy density ρ are obtained 153 

as follows: 154 

The spatial volume is in the form, 155 

2+= mTV .                   (29) 156 

The Hubble parameter is given by 157 
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The Expansion scalar is, 159 
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The mean anisotropy parameter is, 161 
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The shear scalar is given by, 163 
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We observe that, 165 
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Using equations (8), (17) and (26) in equation (10), the energy density is obtained as 167 
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From equation (6) we obtain 169 
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 171 

Equation (4) leads to the following expression for the function )(Rf  of the Ricci scalar 172 
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which clearly indicates that )(Rf  depends upon T only.  174 

In the special case when ,2== nm )(Rf  turns out to be 175 
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This gives )(Rf  explicitly as a function of R only. 177 

 178 

6. CONCLUSION: 179 

 180 

A Bianchi type-IX cosmological model have been obtained when universe is filled with a 181 

perfect fluid in )(Rf  theory of gravity. The obtained model is singular at 0=T  and the 182 

physical parameters H , θ  and 2σ  are divergent at 0=T  as well. We observed that the 183 

scale factors and volume of the model vanishes at the initial epoch and increases with the 184 

passage of time representing an expanding universe. From equations (30) and (32), the 185 

mean anisotropy parameter mA  is shown to be constant and )0(
2

2

≠
θ
σ

 is also constant, 186 

hence the model is anisotropic throughout the evolution of the universe except at when 187 

1=m ; i.e. the model does not approach isotropy. 188 



It is worth mentioning that, the obtained model is point type singular, expanding, shearing, 189 

non-rotating and does not approach isotropy for large T . We hope that our model will be 190 

useful in the study of structure formation in the early universe and the accelerating 191 

expansion of the universe at present. 192 
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 339 

Comment [A1]: Cosmological observations such as Cosmic Microwave Background 340 

Radiation (CMBR), supernova (SN Ia) and large scale structure are considered as the recent 341 

observational data suggesting that the universe is not only expanding but also accelerating. 342 

 343 

Comment [A2]: Using the barotropic equation of state 10, ≤≤= γγρp  where ρ  is the 344 

energy density and p  is the pressure of the fluid, we conclude that our model is viable for; 345 

stiff fluid (), zeldovich fluid (), radiating fluid,   346 

 347 

Comment [A3]: In the complete paper F(R) is replaced by F. 348 

 349 

Comment [A4]: It is not necessary to give how the equation a=bm is generated using the 350 

assumption that the square of the expansion scalar (θ ) is proportional to the shear scalar 351 

( 2σ ). The same condition is also used by renowned recent cosmologists like D R K Reddy, 352 

Aniruddha Pradhan, K S Adhav, Shriram etc.  353 

 354 

Comment [A5, A6, A7, A8]: (i) For Bianchi type-IX space-time the average scale factor is 355 

defined as 3

1
2 )(abA =  where spatial volume 2abV = . 356 

(ii) f(R) is a function of R and F is identical with )(Rf
dR

d
F = , automatically F is considered 357 

as a function of R where R directly relates with the scale factors a and b as in equation (6). 358 

Also The average scale factor A depends upon scale factors which we have defined earlier. 359 

(iii) Such condition has been used by cosmologists Mf. Sharif, K S Adhav in development of 360 

cosmological models in f(R) gravity. 361 

 362 



Comment [A9, A10]: b
db

dt
b

dt

d
b

db

d &&&& 2)()( 22 == . 363 

Using this equation, equation (21) is converted into linear differential equation of order one 364 

where 2b&  is dependent variable and b  as an independent variable. 365 

 366 

Comment [A11]: In the transformations b is replaced with T and no objection if we keep x, y, 367 

z in place of X, Y, Z. 368 


