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ABSTRACT  12 
 13 
The modified simple equation (MSE) method is an important mathematical tool for 

searching closed-form solutions to nonlinear evolution equations (NLEEs). Earlier the 

method cannot be used to NLEEs for higher balance number. Very recently Khan and 

Akbar developed a technique to fulfill this shortcoming and solved NLEEs for balance 

number two by the MSE method. In the present paper, by using the MSE method, we 

derive some impressive solitary wave solutions to NLEES via the strain wave equation in 

microstructured solids which is a very important equation in the field of engineering. The 

solutions contain some free parameters and for particulars values of the parameters some 

known solutions are derived. The solutions exhibit necessity and reliability of the method. 
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1. INTRODUCTION 18 

Physical systems are in general explained with nonlinear partial differential equations. The 19 

mathematical modeling of microstructured solid materials that change over time depends 20 

closely on the study of a variety of systems of ordinary and partial differential equations. 21 
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Similar models are developed in diverse fields of study, ranging from the natural and 22 

physical sciences, population ecology to economics, infectious disease epidemiology, neural 23 

networks, biology, mechanics etc. In spite of the eclectic nature of the fields wherein these 24 

models are formulated, different groups of them contribute adequate common attributes that 25 

make it possible to examine them within a unified theoretical structure. Such study is an area 26 

of functional analysis, usually called the theory of evolution equations. Therefore, the 27 

investigation of solutions to NLEEs plays a very important role to uncover the obscurity of 28 

many phenomena and processes throughout the natural sciences. However, one of the 29 

essential problems is to obtain theirs closed-form solutions. For that reason, diverse groups 30 

of engineers, physicists, and mathematicians have been working tirelessly to investigate 31 

closed-form solutions to NLEEs. Accordingly, in the recent years, they establish several 32 

methods to search exact solutions, for instance, the Darboux transformation method [1], the 33 

Jacobi elliptic function method [2, 3], the He’s homotopy perturbation method [4, 5], the tanh-34 

function method [6, 7], the extended tanh-function method [8, 9], the Lie group symmetry 35 

method [10], the variational iteration method [11], the Hirota’s bilinear method [12], the 36 

Backlund transformation method [13, 14], the inverse scattering transformation method [15], 37 

the sine-cosine method [16, 17], the Painleve expansion method [18], the Adomian 38 

decomposition method [19, 20], the )/( GG′ -expansion method [21-26], the first integration 39 

method [27], the F-expansion method [28],  the auxiliary equation method [29], the ansatz 40 

method [30, 31], the Exp-function method [32, 33], the homogeneous balance method [34], 41 

the modified simple equation method [35-39], the ))(exp( ηϕ− -expansion method [40, 41], the 42 

Miura transformation method [42], and others. 43 

Microstructured materials like crystallites, alloys, ceramics, and functionally graded materials 44 

have gained broad application. The modeling of wave propagation in such materials should 45 

be able to account for various scales of microstructure [43]. In the past years, many authors 46 

have studied the strain wave equation in microstructured solids, such as, Alam et al. [43] 47 

solved this equation by using the new generalized )/( GG′ -expansion method. Pastrone et 48 
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al. [44], Porubov and Pastrone [45] examined bell-shaped and kink-shaped solutions of this 49 

engineering problem. Akbar et al. [46] constructed traveling wave solutions of this equation 50 

by using the generalized and improved )/( GG′ -expansion method. The above analysis 51 

shows that several methods to achieve exact solutions to this equation have been 52 

accomplished in the recent years. But the equation has not been studied by means of the 53 

MSE method. In this article, our aim is, we will apply the MSE method following the 54 

technique derived in the Ref. [47] to examine some new and impressive solitary wave 55 

solutions to the strain wave equation in microstructured solids. 56 

The structure of this article is as follows: In section 2, we describe the method. In section 3, 57 

we apply the MSE method to the strain wave equation in microstructured solids. In section 4, 58 

we provide the physical interpretations of the obtained solutions. Finally, in section 5, 59 

conclusions are given. 60 

2. DESCRIPTION OF THE METHOD 61 

Assume the nonlinear evolution equation has the following form 62 

  0=,...),,,,,,( ttxxzyxt uuuuuuuP ,                        (2.1) 63 

where ),,,( tzyxuu =  is an unidentified function, P  is a polynomial function in ),,,( tzyxuu =  64 

and its partial derivatives, wherein nonlinear term of the highest order and the highest order 65 

linear terms exist and subscripts indicate partial derivatives. To solve (2.1) by using the MSE 66 

method [35-39], we need to perform the subsequent steps: 67 

Step 1: Now, we combine the real variable x  and t  by a compound variable ξ  as follows: 68 

)(=),,,( ξUtzyxu ,  tωzyxξ ±++= .           (2.2) 69 

Here ξ  is called the wave variable it allows us to switch Eq. (2.1) into an ordinary differential 70 

equation (ODE): 71 

),′′′,′′,′,( LUUUUQ ,               (2.3) 72 

where Q  is a polynomial in )(ξU  and its derivatives, where 
ξd

Ud
ξU =)(′ . 73 
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Step 2:   We assume that Eq. (2.3) has the traveling wave solution in the following form, 74 

iN

i
i ξψ

ξψ
aξU

)(

)(′
=)( ∑

0=

,                          (2.4) 75 

where ,ia  ),,2,1,0( Ni L=  are arbitrary constants, such that 0≠Na , and )(ξψ  is an 76 

unidentified function which is to be determined later. In )′( GG -expansion method, Exp-77 

function method, tanh-function method, sine-cosine method, Jacobi elliptic function method 78 

etc., the solutions are initiated through several auxiliary functions which are previously 79 

known, but in the MSE method, )(ξψ  is neither a pre-defined function nor a solution of any 80 

pre-defined differential equation. Therefore, it is not possible to speculate from formerly, 81 

what kind of solution can be found by this method. 82 

Step 3: We determine the positive integer N , come out in Eq. (2.4) by taking into account 83 

the homogeneous balance between the highest order nonlinear terms and the derivatives of 84 

the highest order occurring in Eq. (2.3). 85 

Step 4: We calculate the necessary derivatives UUU ′′′,′′,′ , etc., then insert them into Eq. 86 

(2.3) and then taken into consideration the function )(ξψ . As a result of this insertion, we 87 

obtain a polynomial in ( ))(/)( ξψξψ ′ . We equate all the coefficients of ( ) ,)( iξψ  88 

),...,2,1,0=( Ni  to this polynomial to zero. This procedure yields a system of algebraic and 89 

differential equations whichever can be solved for getting ia  ),,2,1,0( Ni L= , )(ξψ  and the 90 

value of the other  parameters. 91 

3. APPLICATION OF THE METHOD 92 

In this section, we will execute the application of the MSE method to extract solitary wave 93 

solutions to the strain wave equation in microstructured solids which is a very important 94 

equation in the field of engineering. Let us consider the strain wave equation in 95 

microstructured solids: 96 
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��� − ��� − � ��	�
��� − ��
���� + �������� − 	��� − �
��������
+ ��	�������� + �������� = 0.                                                                          	3.1� 

 97 

3.1. THE NON-DISSIPATIVE CASE  98 

The system is non-dissipative, if 0=γ  and determined by the double dispersive equation 99 

(see [44], [45], [48], [49] for details) 100 

��� − ��� − � ��	�
��� + �������� − �������� = 0.                                                                   	3.2� 

The balance between dispersion and nonlinearities happen when )(εδ O= . Therefore, (3.2) 101 

becomes 102 

��� − ��� − � ���	�
��� − ������� + �������� = 0.                                                                     	3.3� 

In order to extract solitary wave solutions of the strain wave equation in microstructured 103 

solids by using the MSE method, we use the traveling wave variable 104 

�	�, �� = �	 �,      = � − ! �.                                                                                                            	3.4� 

The wave transformation (3.4) reduces Eq. (3.3) into the ODE in the following form: 105 

	!
 − 1� �## − �$��	 �
�## − 	�� − !
��� �	%&�' = 0.                                                                	3.5� 

where primes indicate differential coefficients with respect to ξ . Eq. (3.5) is integrable, 106 

therefore, integration (3.5) as many time as possible, we obtain the following ODE: 107 

	!
 − 1� � − �����
 − 	�� − !
��� �##� = 0.                                                                             	3.6� 

where the integration constants are set zero, as we are seeking solitary wave solutions. 108 

Taking homogeneous balance between the terms U ′′  and 2U  appearing in Eq. (3.6), we 109 

obtain 2=N . Therefore, the shape of the solution of Eq. (3.6) becomes 110 

�	 � = *+ + *�,#, + *
	,#�
,
  .                                                                                                           	3.7� 
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wherein 10 , aa  and 2a  are constants to be find out afterward such that 02 ≠a , and )(ξψ  is 111 

an unknown function. The derivatives of U  are given in the following: 112 

�# = − *�	,#�
,
 − 2*
	,#��,� + *�,##, + 2*
,#,##,
 .                                                                        	3.8� 

�## = *� /2	,#��,� − 3,#,##,
 + ,###, 0 + 2*
 /	,##�
,
 + ,#,###,
 − 5	,#�
,##,� + 3	,#��,� 0.         	3.9� 

Inserting the values of UU ′,  and U ′′  into Eq. (3.6), and setting each coefficient of ,2 , 3 =113 

0, 1, 2, ⋯ to zero, we derive, successively 114 

*+	−1 + !
 − � *+��� = 0.                                                                                                              	3.10� 

*��	−1 + !
 − 2�*+���,# + �	�� − !
���,###� = 0.                                                              	3.11� 

−�*�,#�*���,# + 3	�� − !
���,##� + 2*
�	�� − !
���,#,###
+ *
�	−1 + !
 − 2�*+���	,#�
 + 2�	�� − !
���	,##�
� = 0.            	3.12� 

−2�	,#�
�*�	*
�� − �� + !
���,# + 5*
	�� − !
���,##� = 0.                                         	3.13� 

−�*
	*
�� − 6�� + 6!
���	,#�� = 0.                                                                                         	3.14� 

From Eq. (3.10) and Eq. (3.14), we obtain 115 

*+ = 0,   −1 + !
���   and   *
 = 6	�� − !
����� ,     scince *
 ≠ 0. 
Therefore, for the values of 0a , there arise the following cases: 116 

Case 1: When 00 =a , from Eqs. (3.11)-(3.13), we obtain 117 

*� = ± 6√1 − !
?�� − !
��√���  

and 118 

,	 � = @
 + �@�	−�� + !
���−1 + !
  A∓ C?DEFG
√HIJKEFGJL , 

where 1c  and 2c   are integration constants. 119 
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Substituting the values of 210 ,, aaa  and ,	 � into Eq. (3.7), we obtain the following 120 

exponential form solution: 121 

�	 � = 6A± C?DEFG
√HIJKEFGJL	−1 + !
�
@�@
	−�� + !
���

��
M
NO	−1 + !
�@
 A± PC?EDQFG

√HIJKEFGJL + �@�	−�� + !
���
R
ST


 .                                          	3.15� 

Simplifying the required solution (3.15), we derive the following close-form solution of the 122 

strain wave equation in microstructured solids (3.3): 123 

�	�, �� = �6	−1 + !
�
@�@
	−�� + !
����
/ V�� W± X sinY	� − �!�Z[�	−1 + !
�@
 + �@�	�� − !
����
+ cosY	� − �!�Z[�	−1 + !
�@
 + �@�	−�� + !
����]
^                      	3.16� 

where Z ?_�`aG
√b?cK_aGcL. Solution (3.16) is the generalized solitary wave solution of the strain 124 

wave equation in microstructured solids. Since 1c  and 2c  are arbitrary constants, one might 125 

arbitrarily choose their values. Therefore, if we choose @� = 	−1 + !
� and @
 = �	−�� +126 !2�4 then from (3.16), we obtain the following bell shaped soliton solution: 127 

��	�, �� = 3	−1 + !
� 2���  sech
 e	� − �!�√−1 + !
2√�?−�� + !
�� f.                                                  	3.17� 

Again, if we choose @� = 	−1 + !
� and @
 = −�	−�� + !
���, then from (3.16), we obtain 128 

the following singular soliton: 129 

�
	�, �� = − 3	−1 + !
� 2���  csch
 e	� − �!�√−1 + !
2√�?−�� + !
�� f.                                                        	3.18� 

On the other hand, when @� = 	−1 + !
� and @
 = ±X �	−�� + !
���, from solution (3.16), 130 

we obtain the following trigonometric solution: 131 

��	�, �� = 3	−1 + !
� 2���  sec
 g14 /h + 2	� − �!�√−1 + !
√�?�� − !
�� 0i.                                               	3.19� 
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Again when @� = 	−1 + !
� and @
 = ∓X �	−�� + !
���, then the generalized solitary wave 132 

solution (3.16) can be simplified as: 133 

��	�, �� = 3	−1 + !
� 2���  csc
 g14 /h + 2	−� + �!�√−1 + !
√�?�� − !
�� 0i.                                            	3.20� 

If we choose more different values of 1c  and 2c , we may derive a lot of general solitary 134 

wave solutions to the Eq. (3.3) through the MSE method. For succinctness, other solutions 135 

have been overlooked. 136 

Case 2: When 
1

2

0
1

αε
ω+−=a , then Eqs. (3.11)-(3.13) yield 137 

*� = ± 6√−1 + !
?�� − !
��√���  

And 138 

,	 � = @
 + �@�	�� − !
���−1 + !
  A∓ C?EDQFG
√HIJKEFGJL , 

where 1c  and 2c  are constants of integration. 139 

Now, by means of the values of *+, *�, *
 and ,	 �, from Eq. (3.7), we obtain the 140 

subsequent solution: 141 

�	 � = −1 + !
��� + 6	−1 + !
�
@�@
	−�� + !
���A± C?EDQFG
√HIJKEFGJL

�� j	−1 + !
�@
A± C?EDQFG
√HIJKEFGJL + �@�	�� − !
���k


 .                         	3.21� 

Now, transforming the required exponential function solution (3.21) into hyperbolic function, 142 

we obtain the following solution to the strain wave equation in the microstructured solids: 143 
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�	�, �� = 	−1 + !
�l	−1 + !
�
$coshY2m	� − �!�[ + sinhY2m	� − �!�['@


+ �
$coshY2m	� − �!�[ − sinhY2m	� − �!�['@�
	�� − !
���

+ 4�	−1 + !
�@�@
	−�� + !
���n
/ o���l	−1 + !
�$coshYm	� − �!�[ + sinhYm	� − �!�['@

+ �$coshYm	� − �!�[ − sinhYm	� − �!�['@�	�� − !
���n
[.               	3.22� 

Thus, we acquire the generalized solitary wave solution (3.22) to the strain wave equation in 144 

microstructured solids, where m = ?_�`aG
√b?cK_aGcL. Since 1c  and 2c  are integration constants, 145 

therefore, somebody might randomly pick their values. So, if we pick @� = 	−1 + !
� and 146 

@
 = −�	�� − !
���, then from (3.22), we obtain the subsequent solitary wave solution: 147 

��	�, �� =  	−1 + !
� 2��� /2 + 3 csch
 e	� − �!�√−1 + !
2√�?�� − !
�� f0.                                                	3.23� 

Again, if we pick @� = 	−1 + !
� and @
 = �	�� − !
���, then the solitary wave solution 148 

(3.22) reduces to: 149 

��	�, �� = − 	−1 + !
� 2��� /−2 + 3 sech
 e	� − �!�√−1 + !
2√�?�� − !
�� f0.                                         	3.24� 

Moreover, if we pick @� = 	−1 + !
� and @
 = ∓X �	�� − !
���, then from (3.22), we derive 150 

the following solution: 151 

��	�, �� = 	−1 + !
���� /1 − 32 csc
 eh4 − 12 	� − �!�√−1 + !
√�?−�� + !
�� f0.                                        	3.25� 

Again, if we pick @� = 	−1 + !
� and @
 = ±X �	�� − !
���, then from (3.22), we obtain the 152 

following solution: 153 

�p	�, �� = 	−1 + !
���� /1 − 32 csc
 eh4 + 12 	� − �!�√−1 + !
√�?−�� + !
�� f0.                                        	3.26� 
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Forasmuch as, 1c  and 2c  are arbitrary constants, if we choose more different values of 154 

them, we may derive a lot of general solitary wave solutions to the Eq. (3.3) through the 155 

MSE method easily. But, we did not write down the other solutions for minimalism. 156 

Remark 1: Solutions (3.17)-(3.20) and (3.23)-(3.26) have been confirmed by inserting them 157 

into the main equation and found accurate. 158 

3.2. THE DISSIPATIVE CASE 159 

If 0≠γ , then the system is dissipative. Therefore, for )(εγδ O== , the balance should be 160 

between nonlinearity, dispersion and dissipation, perturbed by the higher order dissipative 161 

terms to the strain wave equation in microstructured solids (see [44], [45], [48], [49] for 162 

details), 163 

��� − ��� − � ���	�
��� + �
���� − ������� + �������� = 0.                                                	3.27� 

where ,0→ε  so the higher order term are omitted. 164 

The traveling wave transformation (3.4) reduces Eq. (3.27) to the following ODE: 165 

	!
 − 1� �## − �$��	 �
�## − ! �
�### − 	�� − !
��� �	%&�' = 0.                                        	3.28� 

where prime stands for the differential coefficient. Integrating Eq. (3.28) with respect to ξ , 166 

we get 167 

	!
 − 1� � − �����
 − ! �
�# − 	�� − !
��� �##� = 0.                                                        	3.29� 

The homogeneous between the highest order nonlinear term and the linear terms of the 168 

highest order, we obtain 2=N . Thus, the structure of the solution of Eq. (3.29) is one and 169 

the same to the form of the solution (3.7). 170 

Inserting the values of �, �# and  �## into Eq. (3.29) and then setting each coefficient of 171 

,_2 , 3 = 0, 1, 2, ⋯ to zero, we successively obtain 172 

*+	−1 + !
 − �*+��� = 0.                                                                                                               	3.30� 

*��	−1 + !
 − 2�*+���,# + �!�
,## + �	�� − !
���,###� = 0.                                        	3.31� 
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−�*�,#�	*��� + !�
�,# + 3	�� − !
���,##� + 2�*
,#�!�
,## + 	�� − !
���,###�
+ *
q	−1 + !
 − 2�*+���	,#�
 + 2�	�� − !
���	,##�
r = 0.            	3.32� 

−2�*�	*
�� − �� + !
���	,#�� − 2�*
�!�
,# + 5	�� − !
���,##�	,#�
 = 0.            	3.33� 

−�*
	*
�� − 6�� + 6!
���	,#�� = 0.                                                                                         	3.34� 

From Eqs. (3.30) and (3.34), we obtain 173 

*+ = 0,   −1 + !
���    and   *
 = 6	�� − !
����� ,     scince *
 ≠ 0. 
Therefore, depending on the values of *+, the following different cases arise: 174 

Case 1:  When *+ = 0, from Eqs. (3.31) - (3.33), we get 175 

,	 � = @
 + 30@�	�� − !
���−5*��� − 6!�
  AC	EstDJDEuFJG�KvYJKEFGJL[ , 

*� = 0,   ω = ± x�bcGG_
�	cK`cL�`I$�bcGG_
�	cK`cL�'G_
�++cKcL_cL5√2 = ±θ, 
and 176 

*� = 3 z3�!���
 + 5?���
��!
�

 + 4	−1 + !
�	−�� + !
����^5���
 ,

ω = − x25 + �bcGGcL + 
�cKcL ± IY_�bcGG_
�cK_
�cL[G_
�++cKcLcL5√2 , 
where 1c  and 2c  are integration constants. 177 

Hence for the values of *� and ω,  there also arise three cases. But when *� ≠ 0 then the 178 

shape of the solutions for dissipative case is distorted and the solution size is very long. So 179 

we have omitted the other value of *� and discussed only for *� = 0. 180 

When *� = 0 then we get also the solutions to the above mentioned equation depends for 181 

the values of ω. Thus, 182 

,	 � = @
 − 5@�	�� − !
���!�
  A_ CFJGs	JKEFGJL� 
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Now, by means of the values of *+, *�, *
 and ,	 � from Eq. (3.7), we achieve the 183 

subsequent solution: 184 

�	 � = − 6!
@�
�

	−�� + !
���
�� /!@
�
A CFJGsJKEsFGJL − 5@�	�� − !
���0
 .                                                              	3.35� 

Simplifying the required solution (3.35), we derive the following close-form solution of the 185 

strain wave equation in microstructured solids for dissipative case (3.27): 186 �	�, �� = l6!
$−coshY2{	� − �!�[ + sinhY2{	� − �!�['@�
�

	−�� + !
���n
/ o��l!$coshY{	� − �!�[ + sinhY{	� − �!�['@
�

+ 5$−coshY{	� − �!�[ + sinhY{	� − �!�['@�	�� − !
���n
[.           	3.36� 

where { = a cG�+	cK_aGcL�,  ω = ±θ or  and @�, @
 are integrating constants. Since 1c  and 2c  are 187 

integration constants, one might arbitrarily select their values. If we choose @� = �
! and 188 @
 = −5	�� − !
���, then from (3.36), we obtain 189 

�|	�,   �� = 3!
�

50��	�� − !
��� /1 + tanh e!	−� + �!��
10	�� − !
���f0
 .                                             	3.37� 

Again if we choose @� = �
! and @
 = 5	�� − !
���, then from (3.36), we attain the 190 

subsequent soliton solution: 191 

��+	�,   �� = 3!
�

50��	�� − !
��� /1 + coth e!	−� + �!��
10	�� − !
���f0
 .                                            	3.38� 

Case 2: When 
1

2

0
1

αε
ω+−=a , from Eq.(3.31)-(3.33), we obtain 192 

,	 � = @
 + 30@�	�� − !
���−5*��� − 6!�
  AC	EstDJDEuFJG�KvYJKEFGJL[ , 
where 1c  and 2c  are integration constants and 193 

~��
��
���
�

*� = 0,   ω =
���
���
���
�
± x�bcGG`
�cK`
�cL_I$�bcGG`
�	cK`cL�'G_
�++cKcLcL5√2 = ±��	say�

± x�bcGG`
�cK`
�cL`I$�bcGG`
�	cK`cL�'G_
�++cKcLcL5√2 = ±�
	say�
�
���
��
���
�

; 
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~�
�
��*� = 3 z3�!���
 + 5?���
��!
�

 + 4	−1 + !
�	�� − !
����^5���
 ,

ω = − x_�bcGG`
�cK`
�cL±I$�bcGG_
�	cK`cL�'G_
�++cKcLcL5√2 ��
�

; 

~�
�
��*� = 3 z3�!���
 − 5?���
��!
�

 + 4	−1 + !
�	�� − !
����^5���
 ,

ω = x_�bcGG`
�cK`
�cL±I$�bcGG_
�	cK`cL�'G_
�++cKcLcL5√2 ��
�

. 
Hence for the values of *� and ω,  there arises also three cases. When *� ≠ 0, then the form 194 

of solutions to the strain wave equation in microstructured solids for dissipative case (3.24) 195 

indistinct and the solution size is very lengthy. So we omitted the extra value of *� and only 196 

discuss for *� = 0. 197 

When *� = 0 then we find also the solutions to the above revealed equation depends for the 198 

values of ω, i.e. ω = ±�� and ω = ±�
. Therefore, 199 

,	 � = @
 − 5@�	�� − !
���!�
  A_ CFJGs	JKEFGJL� 
where . ω = ±�� or ω = ±�
, 1c  and 2c  are constants of integration. 200 

Substituting the values of 210 ,, aaa  and )(ξψ  into Eq. (3.7), we accomplish the following 201 

solution: 202 
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�	 � = −1 + !
��� − 6!
@�
�

	−�� + !
���
�� /!@
�
A CFJGsJKEsFGJL − 5@�	�� − !
���0
 .                                            	3.39� 

Simplifying the required exponential function solution (3.39) into trigonometric function 203 

solution, we derive the solution of Eq. (3.27) as follows: 204 

�	�, �� = l!
	−1 + !
�$coshY2�	� − �!�[ + sinhY2�	� − �!�['@

�


+ $coshY2�	� − �!�[ − sinhY2�	� − �!�['@�
	�� − !
����6�!
�


− 25	−1 + !
�	−�� + !
���� + 10!	−1 + !
�@�@
�
	−�� + !
���n
/ o���l!$coshY�	� − �!�[ + sinhY�	� − �!�['@
�

+ 5$−coshY�	� − �!�[ + sinhY�	� − �!�['@�	�� − !
���n
[.          	3.40� 

Therefore, we obtain the generalized soliton solution (3.40) to the strain wave equation in 205 

microstructured solids for dissipative case, where � = a cG�+	cK_aGcL� and . ω = ±�� or ω = ±�
. 206 

But, since 1c  and 2c  are arbitrary constants, someone may arbitrarily choose their values. 207 

So, if we choose @� = �
! and @
 = 5	�� − !
���, from (3.20), we get the subsequent 208 

soliton solutions: 209 

���	�,   �� = 	−1 + !
���� − 3!
�

 50��	−�� + !
��� /−1 + coth e !	� − �!��
10	�� − !
���f0
 .          	3.41� 

Again, if we choose @� = �
! and @
 = −5	�� − !
���, the solitary wave solution (3.40) 210 

becomes 211 

��
	�,   �� = 	−1 + !
���� + 3�!
�

50���	�� − !
��� /−1 + tanh e !	� − �!��
10	�� − !
���f0
 .            	3.42� 

As 1c  and 2c  are arbitrary constants, one may pick many other values of them and each of 212 

this selection construct new solution. But for minimalism, we have not recorded these 213 

solutions. 214 
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Remark 2: The solutions (3.37)-(3.38), where ω = ±�� or  ω = ±�
 and the solutions (3.41)-215 

(3.42) ω = ±�� or ω = ±�
 have been confirmed by satisfying the original equation. 216 

4. PHYSICAL INTERPRETATIONS OF THE SOLUTIONS 217 

In this sub-section, we draw the graph of the derived solutions and explain the effect of the 218 

parameters on the solutions for both non-dissipative and dissipative cases. The solution 1u  219 

in (3.17) depends on the physical parameters εααα ,,, 431  and the group velocity ω  . Now, 220 

we will discuss all the possible physical significances for 2,,,2 431 ≤≤− εααα , and soliton 221 

exists for |!| > 1 and |!| < 1. For the value of parameters 0,,, 431 <εααα  and |!| > 1, the 222 

solution 1u  in (3.17) represents the bell shape soliton and when 1<ω  then the solution 1u  223 

represents the anti-bell shape soliton. It is shown in Fig. 1. Also if the values of the 224 

parameters are 0,,,0 431 <> εααα  and 1>ω , then the solution 1u  represents the anti-225 

bell shape soliton and when 1<ω , then the solution 1u  represents the bell shape soliton. It 226 

is shown the Fig. 2. Again, for 0,0,, 431 >< εααα  and 1<ω , the solution 1u in (3.17) 227 

represents the multi-soliton and when 1>ω , the solution 1u  represents the anti-bell shape 228 

soliton. It is plotted in Fig. 3. Again, if the values of the physical parameters are 229 

0,0,,0 431 ><> εααα  and 1>ω , then the solution 1u  represents the anti-bell shape 230 

soliton and when 1<ω  then the solution 1u  represents the bell shape soliton. It is shown in 231 

Fig. 4. We can sketch the other figures of the solution 1u  for different values of the 232 

parameters. But for page limitation in this article we have omitted these figures. So, for other 233 

cases we do not draw the figures but we discuss for other cases with the following table: 234 

0>ε  1>ω  

0,0,0 431 <<< ααα  Anti-bell shape soliton 

0,0,0 431 <<> ααα  Bell shape soliton 

0,0,0 431 <>> ααα  Bell shape soliton 

0,0,0 431 >>> ααα  Bell shape soliton 

0,0,0 431 ><> ααα  Bell shape soliton 

0,0,0 431 <>< ααα  Anti-bell shape soliton 
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0,0,0 431 >>< ααα  Anti-bell shape soliton 

0,0,0 431 ><< ααα  Anti-bell shape soliton 

1<ω  

0,0,0 431 <<< ααα  Bell shape soliton 

0,0,0 431 <<> ααα  Anti-bell shape soliton 

0,0,0 431 <>> ααα  Anti-bell shape soliton 

0,0,0 431 >>> ααα  Anti-bell shape soliton 

0,0,0 431 ><> ααα  Anti-bell shape soliton  

0,0,0 431 <>< ααα  Bell shape soliton 

0,0,0 431 >>< ααα  Bell shape soliton 

0,0,0 431 ><< ααα  Periodic bell shape soliton 

0<ε  

1>ω  

0,0,0 431 <<< ααα  Bell shape or Periodic bell 
shape soliton 

0,0,0 431 <<> ααα  Anti-bell shape soliton or 
Periodic anti-bell shape soliton 

0,0,0 431 <>> ααα  Anti-bell shape soliton 

0,0,0 431 >>> ααα  Periodic anti-bell shape soliton 

0,0,0 431 ><> ααα  Periodic anti-bell shape soliton 

0,0,0 431 <>< ααα  Bell shape soliton 

0,0,0 431 >>< ααα  Periodic bell shape soliton 

0,0,0 431 ><< ααα  Periodic bell shape soliton 

1<ω  

0,0,0 431 <<< ααα  Anti-bell shape soliton or 
Periodic anti-bell shape soliton 

0,0,0 431 <<> ααα  Bell shape or Periodic bell 
shape soliton 

0,0,0 431 <>> ααα  Periodic bell shape soliton 

0,0,0 431 >>> ααα  Bell shape or Periodic bell 
shape soliton 

0,0,0 431 ><> ααα  Bell shape soliton 

0,0,0 431 <>< ααα  Periodic anti-bell shape soliton 

0,0,0 431 >>< ααα  Anti-bell shape soliton or 
Periodic anti-bell shape soliton 

0,0,0 431 ><< ααα  Anti-bell shape soliton 

 235 
Also the soliton 2u  in (3.18) depends on the parameters εααα ,,, 431  and ω . Now, we will 236 

discus all the possible physical significances for 2,,,2 431 ≤≤− εααα , and soliton exists for 237 

1and1 <> ωω . For the value of parameters contains 0,,, 431 >εααα  and 1>ω , then 238 

the solution 2u in (3.18) represents the singular anti-bell shape soliton and when 1<ω  then 239 

the solution 2u  represents the singular bell shape soliton. It is shown in Fig. 5. Also, for 240 

0,0,, 431 >< εααα  and 1>ω , then the solution 2u in (3.18) represents the periodic 241 
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singular anti-bell shape soliton and when 1<ω  then the solution 2u  represents the 242 

periodic singular bell shape soliton. It is plotted of the Fig. 6. On the other hand, the solutions 243 

3u  in (3.19) and 4u  in (3.20) exist for ( ) 0,02
43 <>− εωαα  or ( ) 0,02

43 ><− εωαα  when 244 

1>ω  or 1>ω . For the value of the parameters are 1,2,1.0,25.1 431 −=−=−=−= εααα , 245 

when 96.0=ω , the solution 3u  in (3.19) represents the anti-bell shape soliton and 246 

,1.0,5.1 31 −=−= αα  1,24 −== εα , when 5.1=ω , the solution 4u  represents the periodic 247 

soliton. It is shown in Fig. 7. Again, the travelling wave solution 5u  in (3.23) represents the 248 

bell shape singular solitons for ,1 31 αα =−=  ,14 =α 5.0=ε ,  5.1−=ω  and 5.0=ω  249 

respectively, in Fig. 8  and Fig. 9 from  6u  in (3.24) represents the bell shape soliton, when 250 

5.1=ω  and the anti-bell shape soliton, when 75.0−=ω . In Fig. 10, we have plotted of the 251 

periodic bell shape and anti-bell shape soliton for 25.131 −== αα , ,14 =α  7.0=ε ,  252 

2.1−=ω  and 25.131 −== αα , ,14 =α  7.0−=ε , 25.0=ω  respectively to the solution of 7u  253 

in (3.25) and Fig. 11 plotted the periodic anti-bell shape soliton and bell shape soliton for 254 

,25.11 =α  25.13 −=α , ,14 =α  7.0=ε ,  2.1−=ω  and 25.131 −== αα , ,14 =α  7.0−=ε ,  255 

25.0−=ω   respectively to the solution of 8u  in (3.26). Fig. 12 and 13 represent the kink 256 

shape solutions 9u  given in (3.37) are respectively, for ,11 =α  ,12 =α  ,5.13 −=α  14 −=α  257 

and ,11 −=α  ,12 =α  ,5.13 −=α  14 −=α  respectively, when 1µω ±=  and for ,11 =α  258 

,12 =α  ,5.13 −=α  14 −=α  and ,11 −=α  ,12 =α  ,5.13 −=α  14 −=α  respectively, when 259 

2µω ±= . Also sketch the figures 14 and 15, singular bell shape solutions 10u  in (3.38) for 260 

,11 =α  ,12 =α  ,5.13 −=α  14 −=α  and ,11 −=α  ,12 =α  ,5.13 −=α  14 −=α respectively, 261 

when 1µω ±=  and for ,11 =α  ,12 =α  ,5.13 −=α  14 −=α   and ,11 −=α  ,12 =α  ,5.13 −=α  262 

14 −=α   respectively, when 2µω ±= . On the other hand, Fig. 16 and 17 are singular bell 263 

and singular anti-bell shape soliton solitons 11u  in (3.41) for ,11 =α  ,12 =α  ,13 =α  ,14 =α  264 

5.0=ε  and ,11 −=α  ,12 =α  ,13 =α  ,14 =α  5.0=ε  respectively, when 1θω ±=  and for 265 
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,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  and ,11 −=α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  266 

respectively, when 2θω ±= . Also, draw the Figures 18 and 19 are kink shape solitons 12u  in 267 

(3.42) for ,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  and ,11 −=α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  268 

respectively, when 1θω ±=  and for ,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  and ,11 −=α  269 

,12 =α  ,13 =α  ,14 =α 5.0=ε  respectively, when 2θω ±= . All figures are drawn within 270 

10,10 ≤≤− tx .  271 

We can sketch the other figures or discuss the solutions 2u  to 12u  for different values of the 272 

parameters. But for page limitation in this article we have omitted these figures in details. 273 

 274 

        275 
Fig. 1: Sketch of the solution 1u  for 5.1,001.0 431 −====−= ωεααα  and 276 

75.0,001.0 431 −====−= ωεααα  respectively. 277 

       278 
Fig. 2: Plot of the solution 1u  for 5.1,001.0 431 −===== ωεααα  and 279 

75.0,001.0 431 −===== ωεααα  respectively. 280 
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        281 
Fig. 3: Sketch of the solution 1u  for 5.0,2.1431 ==−=== ωεααα  and 282 

25.1,5.0,2.1431 ==−=== ωεααα  respectively. 283 
 284 

    285 

        286 
Fig. 4: Sketch of the solution 1u  for 2.1,75.0 431 −=== ααα , 5.0=ε , 25.1=ω  and 287 

5.0,5.0,2.1,75.0 431 ==−=== ωεααα  respectively. 288 

        289 
Fig. 5: Sketch of the singular dark and singular bell shape soliton 2u  for 5.0431 === ααα , 75.0=ε , 290 

5.1−=ω  and 5.0431 === ααα , 75.0=ε , 25.0−=ω  respectively. 291 
 292 
 293 
 294 
 295 
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       296 
Fig. 6: Sketch of the periodic singular solution 2u  for 5.1431 −=== ααα , 75.0=ε , 5.1−=ω  and 297 

5.1431 −=== ααα , 75.0=ε , 25.0−=ω  respectively. 298 
 299 

       300 
Fig. 7: Sketch of the solution 3u  and the solution 4u  for ,25.11 −=α  ,1.03 −=α  ,24 −=α 1−=ε ,  301 

96.0=ω  and ,5.11 −=α  ,1.03 −=α  ,24 =α  1−=ε , 5.1=ω  respectively. 302 

        303 
Fig. 8: Sketch of the solutions 5u  for ,1 31 αα =−=  ,14 =α 5.0=ε ,  5.1−=ω  and 5.0=ω  respectively. 304 
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       305 
Fig. 9: Sketch of the bell shape soliton and anti-bell shape soliton 6u  for ,1431 −=== ααα  5.0=ε ,  306 

5.1=ω  and 75.0−=ω  respectively. 307 

         308 
Fig. 10: Sketch of the solutions 7u  for 25.131 −== αα , ,14 =α  7.0=ε ,  2.1−=ω  and 309 

25.131 −== αα , ,14 =α  7.0−=ε , 25.0=ω  respectively. 310 

      311 
Fig. 11: Sketch of the solutions 8u  for ,25.11 =α  25.13 −=α , ,14 =α  7.0=ε ,  2.1−=ω  and 312 

25.131 −== αα , ,14 =α  7.0−=ε ,  25.0−=ω   respectively. 313 
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        314 
Fig. 12: Kink shape soliton obtained from 9u  for ,11 =α  ,12 =α  ,5.13 −=α  ,14 −=α 5.0=ε  and 315 

,11 −=α  ,12 =α  ,5.13 −=α  ,14 −=α 5.0=ε  respectively, when 1µω ±= . 316 

    317 
Fig. 13: Kink shape soliton obtained from 9u  for ,11 =α  ,12 =α  ,5.13 −=α  ,14 −=α 5.0=ε  and 318 

,11 −=α  ,12 =α  ,5.13 −=α  ,14 −=α 5.0=ε  respectively, when 2µω ±= . 319 

     320 
Fig. 14: Singular bell shape and anti-bell shape soliton 10u  for ,11 =α  ,12 =α  ,5.13 −=α  ,14 −=α321 

5.0=ε  and ,11 −=α  ,12 =α  ,5.13 −=α  ,14 −=α 5.0=ε  respectively, when 1µω ±= . 322 
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       323 
 324 

Fig. 15: Singular anti-bell shape and bell shape soliton 10u  in (3.38) for ,11 =α  ,12 =α  ,5.13 −=α  325 

,14 −=α 5.0=ε  and ,11 −=α  ,12 =α  ,5.13 −=α  ,14 −=α 5.0=ε  respectively, when 2µω ±= . 326 

     327 
Fig. 16: Sketch the singular bell type and anti-bell soliton 11u  for ,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  328 

and ,11 −=α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  respectively, when 1θω ±= . 329 

       330 
Fig. 17: Singular anti-bell shape and bell shape soliton 11u  for ,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  and 331 

,11 −=α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  respectively, when 2θω ±= . 332 
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      333 
Fig. 18: Kink shape soliton 12u  for ,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  and ,11 −=α  ,12 =α  334 

,13 =α  ,14 =α 5.0=ε  respectively, when 1θω ±= . 335 

      336 

Fig. 19: Kink shape soliton 12u  for ,11 =α  ,12 =α  ,13 =α  ,14 =α 5.0=ε  and ,11 −=α  337 

,12 =α  ,13 =α  ,14 =α 5.0=ε  respectively, when 2θω ±= . 338 

 339 

5. CONCLUSION 340 

In this article, we have implemented the MSE method to obtain soliton solutions to the strain 341 

wave equation in microstructured solids for both non-dissipative and dissipative cases. In 342 

fact, we have derived general solitary wave solutions to this equation associated with 343 

arbitrary constants, and for particular values of these constants solitons are originated from 344 

the general solitary wave solutions. We have illustrated the solitary wave properties of the 345 

solutions for various values of the free parameters by means of the graphs. This work shows 346 
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that the MSE method is competent and more powerful and can be used for many other 347 

equations NLEEs applied mathematics and engineering. 348 
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